forked from mrq/DL-Art-School
Support gaussian diffusion models
Adds support for GD models, courtesy of some maths from openai. Also: - Fixes requirement for eval{} even when it isn't being used - Adds support for denormalizing an imagenet norm
This commit is contained in:
parent
45bc76ba92
commit
6084915af8
|
@ -34,6 +34,7 @@ class ImageFolderDataset:
|
|||
# from the same video source. Search for 'fetch_alt_image' for more info.
|
||||
self.skip_lq = opt_get(opt, ['skip_lq'], False)
|
||||
self.disable_flip = opt_get(opt, ['disable_flip'], False)
|
||||
self.rgb_n1_to_1 = opt_get(opt, ['rgb_n1_to_1'], False)
|
||||
if 'normalize' in opt.keys():
|
||||
if opt['normalize'] == 'stylegan2_norm':
|
||||
self.normalize = Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
|
||||
|
@ -143,8 +144,6 @@ class ImageFolderDataset:
|
|||
|
||||
# Convert to torch tensor
|
||||
hq = torch.from_numpy(np.ascontiguousarray(np.transpose(hs[0], (2, 0, 1)))).float()
|
||||
if self.normalize:
|
||||
hq = self.normalize(hq)
|
||||
|
||||
out_dict = {'hq': hq, 'LQ_path': self.image_paths[item], 'HQ_path': self.image_paths[item], 'has_alt': False}
|
||||
|
||||
|
@ -202,6 +201,15 @@ class ImageFolderDataset:
|
|||
out_dict['labels'] = lbls
|
||||
out_dict['labels_mask'] = lbl_masks
|
||||
out_dict['label_strings'] = lblstrings
|
||||
|
||||
for k, v in out_dict.items():
|
||||
if isinstance(v, torch.Tensor) and len(v.shape) == 3:
|
||||
if self.normalize:
|
||||
v = self.normalize(v)
|
||||
if self.rgb_n1_to_1:
|
||||
v = v * 2 - 1
|
||||
out_dict[k] = v
|
||||
|
||||
return out_dict
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
0
codes/models/diffusion/__init__.py
Normal file
0
codes/models/diffusion/__init__.py
Normal file
901
codes/models/diffusion/gaussian_diffusion.py
Normal file
901
codes/models/diffusion/gaussian_diffusion.py
Normal file
|
@ -0,0 +1,901 @@
|
|||
"""
|
||||
This code started out as a PyTorch port of Ho et al's diffusion models:
|
||||
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py
|
||||
|
||||
Docstrings have been added, as well as DDIM sampling and a new collection of beta schedules.
|
||||
"""
|
||||
|
||||
import enum
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import torch as th
|
||||
from tqdm import tqdm
|
||||
|
||||
from .nn import mean_flat
|
||||
from .losses import normal_kl, discretized_gaussian_log_likelihood
|
||||
|
||||
|
||||
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps):
|
||||
"""
|
||||
Get a pre-defined beta schedule for the given name.
|
||||
|
||||
The beta schedule library consists of beta schedules which remain similar
|
||||
in the limit of num_diffusion_timesteps.
|
||||
Beta schedules may be added, but should not be removed or changed once
|
||||
they are committed to maintain backwards compatibility.
|
||||
"""
|
||||
if schedule_name == "linear":
|
||||
# Linear schedule from Ho et al, extended to work for any number of
|
||||
# diffusion steps.
|
||||
scale = 1000 / num_diffusion_timesteps
|
||||
beta_start = scale * 0.0001
|
||||
beta_end = scale * 0.02
|
||||
return np.linspace(
|
||||
beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64
|
||||
)
|
||||
elif schedule_name == "cosine":
|
||||
return betas_for_alpha_bar(
|
||||
num_diffusion_timesteps,
|
||||
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(f"unknown beta schedule: {schedule_name}")
|
||||
|
||||
|
||||
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function,
|
||||
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
||||
|
||||
:param num_diffusion_timesteps: the number of betas to produce.
|
||||
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
||||
produces the cumulative product of (1-beta) up to that
|
||||
part of the diffusion process.
|
||||
:param max_beta: the maximum beta to use; use values lower than 1 to
|
||||
prevent singularities.
|
||||
"""
|
||||
betas = []
|
||||
for i in range(num_diffusion_timesteps):
|
||||
t1 = i / num_diffusion_timesteps
|
||||
t2 = (i + 1) / num_diffusion_timesteps
|
||||
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
||||
return np.array(betas)
|
||||
|
||||
|
||||
class ModelMeanType(enum.Enum):
|
||||
"""
|
||||
Which type of output the model predicts.
|
||||
"""
|
||||
|
||||
PREVIOUS_X = 'previous_x' # the model predicts x_{t-1}
|
||||
START_X = 'start_x' # the model predicts x_0
|
||||
EPSILON = 'epsilon' # the model predicts epsilon
|
||||
|
||||
|
||||
class ModelVarType(enum.Enum):
|
||||
"""
|
||||
What is used as the model's output variance.
|
||||
|
||||
The LEARNED_RANGE option has been added to allow the model to predict
|
||||
values between FIXED_SMALL and FIXED_LARGE, making its job easier.
|
||||
"""
|
||||
|
||||
LEARNED = 'learned'
|
||||
FIXED_SMALL = 'fixed_small'
|
||||
FIXED_LARGE = 'fixed_large'
|
||||
LEARNED_RANGE = 'learned_range'
|
||||
|
||||
|
||||
class LossType(enum.Enum):
|
||||
MSE = 'mse' # use raw MSE loss (and KL when learning variances)
|
||||
RESCALED_MSE = 'rescaled_mse' # use raw MSE loss (with RESCALED_KL when learning variances)
|
||||
KL = 'kl' # use the variational lower-bound
|
||||
RESCALED_KL = 'rescaled_kl' # like KL, but rescale to estimate the full VLB
|
||||
|
||||
def is_vb(self):
|
||||
return self == LossType.KL or self == LossType.RESCALED_KL
|
||||
|
||||
|
||||
class GaussianDiffusion:
|
||||
"""
|
||||
Utilities for training and sampling diffusion models.
|
||||
|
||||
Ported directly from here, and then adapted over time to further experimentation.
|
||||
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42
|
||||
|
||||
:param betas: a 1-D numpy array of betas for each diffusion timestep,
|
||||
starting at T and going to 1.
|
||||
:param model_mean_type: a ModelMeanType determining what the model outputs.
|
||||
:param model_var_type: a ModelVarType determining how variance is output.
|
||||
:param loss_type: a LossType determining the loss function to use.
|
||||
:param rescale_timesteps: if True, pass floating point timesteps into the
|
||||
model so that they are always scaled like in the
|
||||
original paper (0 to 1000).
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
betas,
|
||||
model_mean_type,
|
||||
model_var_type,
|
||||
loss_type,
|
||||
rescale_timesteps=False,
|
||||
):
|
||||
self.model_mean_type = ModelMeanType(model_mean_type)
|
||||
self.model_var_type = ModelVarType(model_var_type)
|
||||
self.loss_type = LossType(loss_type)
|
||||
self.rescale_timesteps = rescale_timesteps
|
||||
|
||||
# Use float64 for accuracy.
|
||||
betas = np.array(betas, dtype=np.float64)
|
||||
self.betas = betas
|
||||
assert len(betas.shape) == 1, "betas must be 1-D"
|
||||
assert (betas > 0).all() and (betas <= 1).all()
|
||||
|
||||
self.num_timesteps = int(betas.shape[0])
|
||||
|
||||
alphas = 1.0 - betas
|
||||
self.alphas_cumprod = np.cumprod(alphas, axis=0)
|
||||
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])
|
||||
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0)
|
||||
assert self.alphas_cumprod_prev.shape == (self.num_timesteps,)
|
||||
|
||||
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||||
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
|
||||
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
|
||||
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
|
||||
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
|
||||
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1)
|
||||
|
||||
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
||||
self.posterior_variance = (
|
||||
betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
|
||||
)
|
||||
# log calculation clipped because the posterior variance is 0 at the
|
||||
# beginning of the diffusion chain.
|
||||
self.posterior_log_variance_clipped = np.log(
|
||||
np.append(self.posterior_variance[1], self.posterior_variance[1:])
|
||||
)
|
||||
self.posterior_mean_coef1 = (
|
||||
betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
|
||||
)
|
||||
self.posterior_mean_coef2 = (
|
||||
(1.0 - self.alphas_cumprod_prev)
|
||||
* np.sqrt(alphas)
|
||||
/ (1.0 - self.alphas_cumprod)
|
||||
)
|
||||
|
||||
def q_mean_variance(self, x_start, t):
|
||||
"""
|
||||
Get the distribution q(x_t | x_0).
|
||||
|
||||
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
||||
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
||||
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
||||
"""
|
||||
mean = (
|
||||
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
||||
)
|
||||
variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
||||
log_variance = _extract_into_tensor(
|
||||
self.log_one_minus_alphas_cumprod, t, x_start.shape
|
||||
)
|
||||
return mean, variance, log_variance
|
||||
|
||||
def q_sample(self, x_start, t, noise=None):
|
||||
"""
|
||||
Diffuse the data for a given number of diffusion steps.
|
||||
|
||||
In other words, sample from q(x_t | x_0).
|
||||
|
||||
:param x_start: the initial data batch.
|
||||
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
||||
:param noise: if specified, the split-out normal noise.
|
||||
:return: A noisy version of x_start.
|
||||
"""
|
||||
if noise is None:
|
||||
noise = th.randn_like(x_start)
|
||||
assert noise.shape == x_start.shape
|
||||
return (
|
||||
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
||||
+ _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
|
||||
* noise
|
||||
)
|
||||
|
||||
def q_posterior_mean_variance(self, x_start, x_t, t):
|
||||
"""
|
||||
Compute the mean and variance of the diffusion posterior:
|
||||
|
||||
q(x_{t-1} | x_t, x_0)
|
||||
|
||||
"""
|
||||
assert x_start.shape == x_t.shape
|
||||
posterior_mean = (
|
||||
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
|
||||
+ _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
||||
)
|
||||
posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
||||
posterior_log_variance_clipped = _extract_into_tensor(
|
||||
self.posterior_log_variance_clipped, t, x_t.shape
|
||||
)
|
||||
assert (
|
||||
posterior_mean.shape[0]
|
||||
== posterior_variance.shape[0]
|
||||
== posterior_log_variance_clipped.shape[0]
|
||||
== x_start.shape[0]
|
||||
)
|
||||
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
||||
|
||||
def p_mean_variance(
|
||||
self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None
|
||||
):
|
||||
"""
|
||||
Apply the model to get p(x_{t-1} | x_t), as well as a prediction of
|
||||
the initial x, x_0.
|
||||
|
||||
:param model: the model, which takes a signal and a batch of timesteps
|
||||
as input.
|
||||
:param x: the [N x C x ...] tensor at time t.
|
||||
:param t: a 1-D Tensor of timesteps.
|
||||
:param clip_denoised: if True, clip the denoised signal into [-1, 1].
|
||||
:param denoised_fn: if not None, a function which applies to the
|
||||
x_start prediction before it is used to sample. Applies before
|
||||
clip_denoised.
|
||||
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
||||
pass to the model. This can be used for conditioning.
|
||||
:return: a dict with the following keys:
|
||||
- 'mean': the model mean output.
|
||||
- 'variance': the model variance output.
|
||||
- 'log_variance': the log of 'variance'.
|
||||
- 'pred_xstart': the prediction for x_0.
|
||||
"""
|
||||
if model_kwargs is None:
|
||||
model_kwargs = {}
|
||||
|
||||
B, C = x.shape[:2]
|
||||
assert t.shape == (B,)
|
||||
model_output = model(x, self._scale_timesteps(t), **model_kwargs)
|
||||
|
||||
if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]:
|
||||
assert model_output.shape == (B, C * 2, *x.shape[2:])
|
||||
model_output, model_var_values = th.split(model_output, C, dim=1)
|
||||
if self.model_var_type == ModelVarType.LEARNED:
|
||||
model_log_variance = model_var_values
|
||||
model_variance = th.exp(model_log_variance)
|
||||
else:
|
||||
min_log = _extract_into_tensor(
|
||||
self.posterior_log_variance_clipped, t, x.shape
|
||||
)
|
||||
max_log = _extract_into_tensor(np.log(self.betas), t, x.shape)
|
||||
# The model_var_values is [-1, 1] for [min_var, max_var].
|
||||
frac = (model_var_values + 1) / 2
|
||||
model_log_variance = frac * max_log + (1 - frac) * min_log
|
||||
model_variance = th.exp(model_log_variance)
|
||||
else:
|
||||
model_variance, model_log_variance = {
|
||||
# for fixedlarge, we set the initial (log-)variance like so
|
||||
# to get a better decoder log likelihood.
|
||||
ModelVarType.FIXED_LARGE: (
|
||||
np.append(self.posterior_variance[1], self.betas[1:]),
|
||||
np.log(np.append(self.posterior_variance[1], self.betas[1:])),
|
||||
),
|
||||
ModelVarType.FIXED_SMALL: (
|
||||
self.posterior_variance,
|
||||
self.posterior_log_variance_clipped,
|
||||
),
|
||||
}[self.model_var_type]
|
||||
model_variance = _extract_into_tensor(model_variance, t, x.shape)
|
||||
model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape)
|
||||
|
||||
def process_xstart(x):
|
||||
if denoised_fn is not None:
|
||||
x = denoised_fn(x)
|
||||
if clip_denoised:
|
||||
return x.clamp(-1, 1)
|
||||
return x
|
||||
|
||||
if self.model_mean_type == ModelMeanType.PREVIOUS_X:
|
||||
pred_xstart = process_xstart(
|
||||
self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output)
|
||||
)
|
||||
model_mean = model_output
|
||||
elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]:
|
||||
if self.model_mean_type == ModelMeanType.START_X:
|
||||
pred_xstart = process_xstart(model_output)
|
||||
else:
|
||||
pred_xstart = process_xstart(
|
||||
self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output)
|
||||
)
|
||||
model_mean, _, _ = self.q_posterior_mean_variance(
|
||||
x_start=pred_xstart, x_t=x, t=t
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(self.model_mean_type)
|
||||
|
||||
assert (
|
||||
model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape
|
||||
)
|
||||
return {
|
||||
"mean": model_mean,
|
||||
"variance": model_variance,
|
||||
"log_variance": model_log_variance,
|
||||
"pred_xstart": pred_xstart,
|
||||
}
|
||||
|
||||
def _predict_xstart_from_eps(self, x_t, t, eps):
|
||||
assert x_t.shape == eps.shape
|
||||
return (
|
||||
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
|
||||
- _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
|
||||
)
|
||||
|
||||
def _predict_xstart_from_xprev(self, x_t, t, xprev):
|
||||
assert x_t.shape == xprev.shape
|
||||
return ( # (xprev - coef2*x_t) / coef1
|
||||
_extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev
|
||||
- _extract_into_tensor(
|
||||
self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape
|
||||
)
|
||||
* x_t
|
||||
)
|
||||
|
||||
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
||||
return (
|
||||
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
|
||||
- pred_xstart
|
||||
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
||||
|
||||
def _scale_timesteps(self, t):
|
||||
if self.rescale_timesteps:
|
||||
return t.float() * (1000.0 / self.num_timesteps)
|
||||
return t
|
||||
|
||||
def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
|
||||
"""
|
||||
Compute the mean for the previous step, given a function cond_fn that
|
||||
computes the gradient of a conditional log probability with respect to
|
||||
x. In particular, cond_fn computes grad(log(p(y|x))), and we want to
|
||||
condition on y.
|
||||
|
||||
This uses the conditioning strategy from Sohl-Dickstein et al. (2015).
|
||||
"""
|
||||
gradient = cond_fn(x, self._scale_timesteps(t), **model_kwargs)
|
||||
new_mean = (
|
||||
p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float()
|
||||
)
|
||||
return new_mean
|
||||
|
||||
def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
|
||||
"""
|
||||
Compute what the p_mean_variance output would have been, should the
|
||||
model's score function be conditioned by cond_fn.
|
||||
|
||||
See condition_mean() for details on cond_fn.
|
||||
|
||||
Unlike condition_mean(), this instead uses the conditioning strategy
|
||||
from Song et al (2020).
|
||||
"""
|
||||
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
|
||||
|
||||
eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"])
|
||||
eps = eps - (1 - alpha_bar).sqrt() * cond_fn(
|
||||
x, self._scale_timesteps(t), **model_kwargs
|
||||
)
|
||||
|
||||
out = p_mean_var.copy()
|
||||
out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps)
|
||||
out["mean"], _, _ = self.q_posterior_mean_variance(
|
||||
x_start=out["pred_xstart"], x_t=x, t=t
|
||||
)
|
||||
return out
|
||||
|
||||
def p_sample(
|
||||
self,
|
||||
model,
|
||||
x,
|
||||
t,
|
||||
clip_denoised=True,
|
||||
denoised_fn=None,
|
||||
cond_fn=None,
|
||||
model_kwargs=None,
|
||||
):
|
||||
"""
|
||||
Sample x_{t-1} from the model at the given timestep.
|
||||
|
||||
:param model: the model to sample from.
|
||||
:param x: the current tensor at x_{t-1}.
|
||||
:param t: the value of t, starting at 0 for the first diffusion step.
|
||||
:param clip_denoised: if True, clip the x_start prediction to [-1, 1].
|
||||
:param denoised_fn: if not None, a function which applies to the
|
||||
x_start prediction before it is used to sample.
|
||||
:param cond_fn: if not None, this is a gradient function that acts
|
||||
similarly to the model.
|
||||
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
||||
pass to the model. This can be used for conditioning.
|
||||
:return: a dict containing the following keys:
|
||||
- 'sample': a random sample from the model.
|
||||
- 'pred_xstart': a prediction of x_0.
|
||||
"""
|
||||
out = self.p_mean_variance(
|
||||
model,
|
||||
x,
|
||||
t,
|
||||
clip_denoised=clip_denoised,
|
||||
denoised_fn=denoised_fn,
|
||||
model_kwargs=model_kwargs,
|
||||
)
|
||||
noise = th.randn_like(x)
|
||||
nonzero_mask = (
|
||||
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
||||
) # no noise when t == 0
|
||||
if cond_fn is not None:
|
||||
out["mean"] = self.condition_mean(
|
||||
cond_fn, out, x, t, model_kwargs=model_kwargs
|
||||
)
|
||||
sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise
|
||||
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
|
||||
|
||||
def p_sample_loop(
|
||||
self,
|
||||
model,
|
||||
shape,
|
||||
noise=None,
|
||||
clip_denoised=True,
|
||||
denoised_fn=None,
|
||||
cond_fn=None,
|
||||
model_kwargs=None,
|
||||
device=None,
|
||||
progress=False,
|
||||
):
|
||||
"""
|
||||
Generate samples from the model.
|
||||
|
||||
:param model: the model module.
|
||||
:param shape: the shape of the samples, (N, C, H, W).
|
||||
:param noise: if specified, the noise from the encoder to sample.
|
||||
Should be of the same shape as `shape`.
|
||||
:param clip_denoised: if True, clip x_start predictions to [-1, 1].
|
||||
:param denoised_fn: if not None, a function which applies to the
|
||||
x_start prediction before it is used to sample.
|
||||
:param cond_fn: if not None, this is a gradient function that acts
|
||||
similarly to the model.
|
||||
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
||||
pass to the model. This can be used for conditioning.
|
||||
:param device: if specified, the device to create the samples on.
|
||||
If not specified, use a model parameter's device.
|
||||
:param progress: if True, show a tqdm progress bar.
|
||||
:return: a non-differentiable batch of samples.
|
||||
"""
|
||||
final = None
|
||||
for sample in self.p_sample_loop_progressive(
|
||||
model,
|
||||
shape,
|
||||
noise=noise,
|
||||
clip_denoised=clip_denoised,
|
||||
denoised_fn=denoised_fn,
|
||||
cond_fn=cond_fn,
|
||||
model_kwargs=model_kwargs,
|
||||
device=device,
|
||||
progress=progress,
|
||||
):
|
||||
final = sample
|
||||
return final["sample"]
|
||||
|
||||
def p_sample_loop_progressive(
|
||||
self,
|
||||
model,
|
||||
shape,
|
||||
noise=None,
|
||||
clip_denoised=True,
|
||||
denoised_fn=None,
|
||||
cond_fn=None,
|
||||
model_kwargs=None,
|
||||
device=None,
|
||||
progress=False,
|
||||
):
|
||||
"""
|
||||
Generate samples from the model and yield intermediate samples from
|
||||
each timestep of diffusion.
|
||||
|
||||
Arguments are the same as p_sample_loop().
|
||||
Returns a generator over dicts, where each dict is the return value of
|
||||
p_sample().
|
||||
"""
|
||||
if device is None:
|
||||
device = next(model.parameters()).device
|
||||
assert isinstance(shape, (tuple, list))
|
||||
if noise is not None:
|
||||
img = noise
|
||||
else:
|
||||
img = th.randn(*shape, device=device)
|
||||
indices = list(range(self.num_timesteps))[::-1]
|
||||
|
||||
for i in tqdm(indices):
|
||||
t = th.tensor([i] * shape[0], device=device)
|
||||
with th.no_grad():
|
||||
out = self.p_sample(
|
||||
model,
|
||||
img,
|
||||
t,
|
||||
clip_denoised=clip_denoised,
|
||||
denoised_fn=denoised_fn,
|
||||
cond_fn=cond_fn,
|
||||
model_kwargs=model_kwargs,
|
||||
)
|
||||
yield out
|
||||
img = out["sample"]
|
||||
|
||||
def ddim_sample(
|
||||
self,
|
||||
model,
|
||||
x,
|
||||
t,
|
||||
clip_denoised=True,
|
||||
denoised_fn=None,
|
||||
cond_fn=None,
|
||||
model_kwargs=None,
|
||||
eta=0.0,
|
||||
):
|
||||
"""
|
||||
Sample x_{t-1} from the model using DDIM.
|
||||
|
||||
Same usage as p_sample().
|
||||
"""
|
||||
out = self.p_mean_variance(
|
||||
model,
|
||||
x,
|
||||
t,
|
||||
clip_denoised=clip_denoised,
|
||||
denoised_fn=denoised_fn,
|
||||
model_kwargs=model_kwargs,
|
||||
)
|
||||
if cond_fn is not None:
|
||||
out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs)
|
||||
|
||||
# Usually our model outputs epsilon, but we re-derive it
|
||||
# in case we used x_start or x_prev prediction.
|
||||
eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"])
|
||||
|
||||
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
|
||||
alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape)
|
||||
sigma = (
|
||||
eta
|
||||
* th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar))
|
||||
* th.sqrt(1 - alpha_bar / alpha_bar_prev)
|
||||
)
|
||||
# Equation 12.
|
||||
noise = th.randn_like(x)
|
||||
mean_pred = (
|
||||
out["pred_xstart"] * th.sqrt(alpha_bar_prev)
|
||||
+ th.sqrt(1 - alpha_bar_prev - sigma ** 2) * eps
|
||||
)
|
||||
nonzero_mask = (
|
||||
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
||||
) # no noise when t == 0
|
||||
sample = mean_pred + nonzero_mask * sigma * noise
|
||||
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
|
||||
|
||||
def ddim_reverse_sample(
|
||||
self,
|
||||
model,
|
||||
x,
|
||||
t,
|
||||
clip_denoised=True,
|
||||
denoised_fn=None,
|
||||
model_kwargs=None,
|
||||
eta=0.0,
|
||||
):
|
||||
"""
|
||||
Sample x_{t+1} from the model using DDIM reverse ODE.
|
||||
"""
|
||||
assert eta == 0.0, "Reverse ODE only for deterministic path"
|
||||
out = self.p_mean_variance(
|
||||
model,
|
||||
x,
|
||||
t,
|
||||
clip_denoised=clip_denoised,
|
||||
denoised_fn=denoised_fn,
|
||||
model_kwargs=model_kwargs,
|
||||
)
|
||||
# Usually our model outputs epsilon, but we re-derive it
|
||||
# in case we used x_start or x_prev prediction.
|
||||
eps = (
|
||||
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x
|
||||
- out["pred_xstart"]
|
||||
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape)
|
||||
alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape)
|
||||
|
||||
# Equation 12. reversed
|
||||
mean_pred = (
|
||||
out["pred_xstart"] * th.sqrt(alpha_bar_next)
|
||||
+ th.sqrt(1 - alpha_bar_next) * eps
|
||||
)
|
||||
|
||||
return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]}
|
||||
|
||||
def ddim_sample_loop(
|
||||
self,
|
||||
model,
|
||||
shape,
|
||||
noise=None,
|
||||
clip_denoised=True,
|
||||
denoised_fn=None,
|
||||
cond_fn=None,
|
||||
model_kwargs=None,
|
||||
device=None,
|
||||
progress=False,
|
||||
eta=0.0,
|
||||
):
|
||||
"""
|
||||
Generate samples from the model using DDIM.
|
||||
|
||||
Same usage as p_sample_loop().
|
||||
"""
|
||||
final = None
|
||||
for sample in self.ddim_sample_loop_progressive(
|
||||
model,
|
||||
shape,
|
||||
noise=noise,
|
||||
clip_denoised=clip_denoised,
|
||||
denoised_fn=denoised_fn,
|
||||
cond_fn=cond_fn,
|
||||
model_kwargs=model_kwargs,
|
||||
device=device,
|
||||
progress=progress,
|
||||
eta=eta,
|
||||
):
|
||||
final = sample
|
||||
return final["sample"]
|
||||
|
||||
def ddim_sample_loop_progressive(
|
||||
self,
|
||||
model,
|
||||
shape,
|
||||
noise=None,
|
||||
clip_denoised=True,
|
||||
denoised_fn=None,
|
||||
cond_fn=None,
|
||||
model_kwargs=None,
|
||||
device=None,
|
||||
progress=False,
|
||||
eta=0.0,
|
||||
):
|
||||
"""
|
||||
Use DDIM to sample from the model and yield intermediate samples from
|
||||
each timestep of DDIM.
|
||||
|
||||
Same usage as p_sample_loop_progressive().
|
||||
"""
|
||||
if device is None:
|
||||
device = next(model.parameters()).device
|
||||
assert isinstance(shape, (tuple, list))
|
||||
if noise is not None:
|
||||
img = noise
|
||||
else:
|
||||
img = th.randn(*shape, device=device)
|
||||
indices = list(range(self.num_timesteps))[::-1]
|
||||
|
||||
if progress:
|
||||
# Lazy import so that we don't depend on tqdm.
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
indices = tqdm(indices)
|
||||
|
||||
for i in indices:
|
||||
t = th.tensor([i] * shape[0], device=device)
|
||||
with th.no_grad():
|
||||
out = self.ddim_sample(
|
||||
model,
|
||||
img,
|
||||
t,
|
||||
clip_denoised=clip_denoised,
|
||||
denoised_fn=denoised_fn,
|
||||
cond_fn=cond_fn,
|
||||
model_kwargs=model_kwargs,
|
||||
eta=eta,
|
||||
)
|
||||
yield out
|
||||
img = out["sample"]
|
||||
|
||||
def _vb_terms_bpd(
|
||||
self, model, x_start, x_t, t, clip_denoised=True, model_kwargs=None
|
||||
):
|
||||
"""
|
||||
Get a term for the variational lower-bound.
|
||||
|
||||
The resulting units are bits (rather than nats, as one might expect).
|
||||
This allows for comparison to other papers.
|
||||
|
||||
:return: a dict with the following keys:
|
||||
- 'output': a shape [N] tensor of NLLs or KLs.
|
||||
- 'pred_xstart': the x_0 predictions.
|
||||
"""
|
||||
true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance(
|
||||
x_start=x_start, x_t=x_t, t=t
|
||||
)
|
||||
out = self.p_mean_variance(
|
||||
model, x_t, t, clip_denoised=clip_denoised, model_kwargs=model_kwargs
|
||||
)
|
||||
kl = normal_kl(
|
||||
true_mean, true_log_variance_clipped, out["mean"], out["log_variance"]
|
||||
)
|
||||
kl = mean_flat(kl) / np.log(2.0)
|
||||
|
||||
decoder_nll = -discretized_gaussian_log_likelihood(
|
||||
x_start, means=out["mean"], log_scales=0.5 * out["log_variance"]
|
||||
)
|
||||
assert decoder_nll.shape == x_start.shape
|
||||
decoder_nll = mean_flat(decoder_nll) / np.log(2.0)
|
||||
|
||||
# At the first timestep return the decoder NLL,
|
||||
# otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t))
|
||||
output = th.where((t == 0), decoder_nll, kl)
|
||||
return {"output": output, "pred_xstart": out["pred_xstart"]}
|
||||
|
||||
def training_losses(self, model, x_start, t, model_kwargs=None, noise=None):
|
||||
"""
|
||||
Compute training losses for a single timestep.
|
||||
|
||||
:param model: the model to evaluate loss on.
|
||||
:param x_start: the [N x C x ...] tensor of inputs.
|
||||
:param t: a batch of timestep indices.
|
||||
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
||||
pass to the model. This can be used for conditioning.
|
||||
:param noise: if specified, the specific Gaussian noise to try to remove.
|
||||
:return: a dict with the key "loss" containing a tensor of shape [N].
|
||||
Some mean or variance settings may also have other keys.
|
||||
"""
|
||||
if model_kwargs is None:
|
||||
model_kwargs = {}
|
||||
if noise is None:
|
||||
noise = th.randn_like(x_start)
|
||||
x_t = self.q_sample(x_start, t, noise=noise)
|
||||
|
||||
terms = {}
|
||||
|
||||
if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL:
|
||||
terms["loss"] = self._vb_terms_bpd(
|
||||
model=model,
|
||||
x_start=x_start,
|
||||
x_t=x_t,
|
||||
t=t,
|
||||
clip_denoised=False,
|
||||
model_kwargs=model_kwargs,
|
||||
)["output"]
|
||||
if self.loss_type == LossType.RESCALED_KL:
|
||||
terms["loss"] *= self.num_timesteps
|
||||
elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE:
|
||||
model_output = model(x_t, self._scale_timesteps(t), **model_kwargs)
|
||||
|
||||
if self.model_var_type in [
|
||||
ModelVarType.LEARNED,
|
||||
ModelVarType.LEARNED_RANGE,
|
||||
]:
|
||||
B, C = x_t.shape[:2]
|
||||
assert model_output.shape == (B, C * 2, *x_t.shape[2:])
|
||||
model_output, model_var_values = th.split(model_output, C, dim=1)
|
||||
# Learn the variance using the variational bound, but don't let
|
||||
# it affect our mean prediction.
|
||||
frozen_out = th.cat([model_output.detach(), model_var_values], dim=1)
|
||||
terms["vb"] = self._vb_terms_bpd(
|
||||
model=lambda *args, r=frozen_out: r,
|
||||
x_start=x_start,
|
||||
x_t=x_t,
|
||||
t=t,
|
||||
clip_denoised=False,
|
||||
)["output"]
|
||||
if self.loss_type == LossType.RESCALED_MSE:
|
||||
# Divide by 1000 for equivalence with initial implementation.
|
||||
# Without a factor of 1/1000, the VB term hurts the MSE term.
|
||||
terms["vb"] *= self.num_timesteps / 1000.0
|
||||
|
||||
target = {
|
||||
ModelMeanType.PREVIOUS_X: self.q_posterior_mean_variance(
|
||||
x_start=x_start, x_t=x_t, t=t
|
||||
)[0],
|
||||
ModelMeanType.START_X: x_start,
|
||||
ModelMeanType.EPSILON: noise,
|
||||
}[self.model_mean_type]
|
||||
assert model_output.shape == target.shape == x_start.shape
|
||||
terms["mse"] = mean_flat((target - model_output) ** 2)
|
||||
if "vb" in terms:
|
||||
terms["loss"] = terms["mse"] + terms["vb"]
|
||||
else:
|
||||
terms["loss"] = terms["mse"]
|
||||
else:
|
||||
raise NotImplementedError(self.loss_type)
|
||||
|
||||
return terms
|
||||
|
||||
def _prior_bpd(self, x_start):
|
||||
"""
|
||||
Get the prior KL term for the variational lower-bound, measured in
|
||||
bits-per-dim.
|
||||
|
||||
This term can't be optimized, as it only depends on the encoder.
|
||||
|
||||
:param x_start: the [N x C x ...] tensor of inputs.
|
||||
:return: a batch of [N] KL values (in bits), one per batch element.
|
||||
"""
|
||||
batch_size = x_start.shape[0]
|
||||
t = th.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
|
||||
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
||||
kl_prior = normal_kl(
|
||||
mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0
|
||||
)
|
||||
return mean_flat(kl_prior) / np.log(2.0)
|
||||
|
||||
def calc_bpd_loop(self, model, x_start, clip_denoised=True, model_kwargs=None):
|
||||
"""
|
||||
Compute the entire variational lower-bound, measured in bits-per-dim,
|
||||
as well as other related quantities.
|
||||
|
||||
:param model: the model to evaluate loss on.
|
||||
:param x_start: the [N x C x ...] tensor of inputs.
|
||||
:param clip_denoised: if True, clip denoised samples.
|
||||
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
||||
pass to the model. This can be used for conditioning.
|
||||
|
||||
:return: a dict containing the following keys:
|
||||
- total_bpd: the total variational lower-bound, per batch element.
|
||||
- prior_bpd: the prior term in the lower-bound.
|
||||
- vb: an [N x T] tensor of terms in the lower-bound.
|
||||
- xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep.
|
||||
- mse: an [N x T] tensor of epsilon MSEs for each timestep.
|
||||
"""
|
||||
device = x_start.device
|
||||
batch_size = x_start.shape[0]
|
||||
|
||||
vb = []
|
||||
xstart_mse = []
|
||||
mse = []
|
||||
for t in list(range(self.num_timesteps))[::-1]:
|
||||
t_batch = th.tensor([t] * batch_size, device=device)
|
||||
noise = th.randn_like(x_start)
|
||||
x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise)
|
||||
# Calculate VLB term at the current timestep
|
||||
with th.no_grad():
|
||||
out = self._vb_terms_bpd(
|
||||
model,
|
||||
x_start=x_start,
|
||||
x_t=x_t,
|
||||
t=t_batch,
|
||||
clip_denoised=clip_denoised,
|
||||
model_kwargs=model_kwargs,
|
||||
)
|
||||
vb.append(out["output"])
|
||||
xstart_mse.append(mean_flat((out["pred_xstart"] - x_start) ** 2))
|
||||
eps = self._predict_eps_from_xstart(x_t, t_batch, out["pred_xstart"])
|
||||
mse.append(mean_flat((eps - noise) ** 2))
|
||||
|
||||
vb = th.stack(vb, dim=1)
|
||||
xstart_mse = th.stack(xstart_mse, dim=1)
|
||||
mse = th.stack(mse, dim=1)
|
||||
|
||||
prior_bpd = self._prior_bpd(x_start)
|
||||
total_bpd = vb.sum(dim=1) + prior_bpd
|
||||
return {
|
||||
"total_bpd": total_bpd,
|
||||
"prior_bpd": prior_bpd,
|
||||
"vb": vb,
|
||||
"xstart_mse": xstart_mse,
|
||||
"mse": mse,
|
||||
}
|
||||
|
||||
|
||||
def _extract_into_tensor(arr, timesteps, broadcast_shape):
|
||||
"""
|
||||
Extract values from a 1-D numpy array for a batch of indices.
|
||||
|
||||
:param arr: the 1-D numpy array.
|
||||
:param timesteps: a tensor of indices into the array to extract.
|
||||
:param broadcast_shape: a larger shape of K dimensions with the batch
|
||||
dimension equal to the length of timesteps.
|
||||
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
|
||||
"""
|
||||
res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
|
||||
while len(res.shape) < len(broadcast_shape):
|
||||
res = res[..., None]
|
||||
return res.expand(broadcast_shape)
|
77
codes/models/diffusion/losses.py
Normal file
77
codes/models/diffusion/losses.py
Normal file
|
@ -0,0 +1,77 @@
|
|||
"""
|
||||
Helpers for various likelihood-based losses. These are ported from the original
|
||||
Ho et al. diffusion models codebase:
|
||||
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/utils.py
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
import torch as th
|
||||
|
||||
|
||||
def normal_kl(mean1, logvar1, mean2, logvar2):
|
||||
"""
|
||||
Compute the KL divergence between two gaussians.
|
||||
|
||||
Shapes are automatically broadcasted, so batches can be compared to
|
||||
scalars, among other use cases.
|
||||
"""
|
||||
tensor = None
|
||||
for obj in (mean1, logvar1, mean2, logvar2):
|
||||
if isinstance(obj, th.Tensor):
|
||||
tensor = obj
|
||||
break
|
||||
assert tensor is not None, "at least one argument must be a Tensor"
|
||||
|
||||
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
||||
# Tensors, but it does not work for th.exp().
|
||||
logvar1, logvar2 = [
|
||||
x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor)
|
||||
for x in (logvar1, logvar2)
|
||||
]
|
||||
|
||||
return 0.5 * (
|
||||
-1.0
|
||||
+ logvar2
|
||||
- logvar1
|
||||
+ th.exp(logvar1 - logvar2)
|
||||
+ ((mean1 - mean2) ** 2) * th.exp(-logvar2)
|
||||
)
|
||||
|
||||
|
||||
def approx_standard_normal_cdf(x):
|
||||
"""
|
||||
A fast approximation of the cumulative distribution function of the
|
||||
standard normal.
|
||||
"""
|
||||
return 0.5 * (1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3))))
|
||||
|
||||
|
||||
def discretized_gaussian_log_likelihood(x, *, means, log_scales):
|
||||
"""
|
||||
Compute the log-likelihood of a Gaussian distribution discretizing to a
|
||||
given image.
|
||||
|
||||
:param x: the target images. It is assumed that this was uint8 values,
|
||||
rescaled to the range [-1, 1].
|
||||
:param means: the Gaussian mean Tensor.
|
||||
:param log_scales: the Gaussian log stddev Tensor.
|
||||
:return: a tensor like x of log probabilities (in nats).
|
||||
"""
|
||||
assert x.shape == means.shape == log_scales.shape
|
||||
centered_x = x - means
|
||||
inv_stdv = th.exp(-log_scales)
|
||||
plus_in = inv_stdv * (centered_x + 1.0 / 255.0)
|
||||
cdf_plus = approx_standard_normal_cdf(plus_in)
|
||||
min_in = inv_stdv * (centered_x - 1.0 / 255.0)
|
||||
cdf_min = approx_standard_normal_cdf(min_in)
|
||||
log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12))
|
||||
log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12))
|
||||
cdf_delta = cdf_plus - cdf_min
|
||||
log_probs = th.where(
|
||||
x < -0.999,
|
||||
log_cdf_plus,
|
||||
th.where(x > 0.999, log_one_minus_cdf_min, th.log(cdf_delta.clamp(min=1e-12))),
|
||||
)
|
||||
assert log_probs.shape == x.shape
|
||||
return log_probs
|
170
codes/models/diffusion/nn.py
Normal file
170
codes/models/diffusion/nn.py
Normal file
|
@ -0,0 +1,170 @@
|
|||
"""
|
||||
Various utilities for neural networks.
|
||||
"""
|
||||
|
||||
import math
|
||||
|
||||
import torch as th
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
||||
class SiLU(nn.Module):
|
||||
def forward(self, x):
|
||||
return x * th.sigmoid(x)
|
||||
|
||||
|
||||
class GroupNorm32(nn.GroupNorm):
|
||||
def forward(self, x):
|
||||
return super().forward(x.float()).type(x.dtype)
|
||||
|
||||
|
||||
def conv_nd(dims, *args, **kwargs):
|
||||
"""
|
||||
Create a 1D, 2D, or 3D convolution module.
|
||||
"""
|
||||
if dims == 1:
|
||||
return nn.Conv1d(*args, **kwargs)
|
||||
elif dims == 2:
|
||||
return nn.Conv2d(*args, **kwargs)
|
||||
elif dims == 3:
|
||||
return nn.Conv3d(*args, **kwargs)
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
|
||||
def linear(*args, **kwargs):
|
||||
"""
|
||||
Create a linear module.
|
||||
"""
|
||||
return nn.Linear(*args, **kwargs)
|
||||
|
||||
|
||||
def avg_pool_nd(dims, *args, **kwargs):
|
||||
"""
|
||||
Create a 1D, 2D, or 3D average pooling module.
|
||||
"""
|
||||
if dims == 1:
|
||||
return nn.AvgPool1d(*args, **kwargs)
|
||||
elif dims == 2:
|
||||
return nn.AvgPool2d(*args, **kwargs)
|
||||
elif dims == 3:
|
||||
return nn.AvgPool3d(*args, **kwargs)
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
|
||||
def update_ema(target_params, source_params, rate=0.99):
|
||||
"""
|
||||
Update target parameters to be closer to those of source parameters using
|
||||
an exponential moving average.
|
||||
|
||||
:param target_params: the target parameter sequence.
|
||||
:param source_params: the source parameter sequence.
|
||||
:param rate: the EMA rate (closer to 1 means slower).
|
||||
"""
|
||||
for targ, src in zip(target_params, source_params):
|
||||
targ.detach().mul_(rate).add_(src, alpha=1 - rate)
|
||||
|
||||
|
||||
def zero_module(module):
|
||||
"""
|
||||
Zero out the parameters of a module and return it.
|
||||
"""
|
||||
for p in module.parameters():
|
||||
p.detach().zero_()
|
||||
return module
|
||||
|
||||
|
||||
def scale_module(module, scale):
|
||||
"""
|
||||
Scale the parameters of a module and return it.
|
||||
"""
|
||||
for p in module.parameters():
|
||||
p.detach().mul_(scale)
|
||||
return module
|
||||
|
||||
|
||||
def mean_flat(tensor):
|
||||
"""
|
||||
Take the mean over all non-batch dimensions.
|
||||
"""
|
||||
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
||||
|
||||
|
||||
def normalization(channels):
|
||||
"""
|
||||
Make a standard normalization layer.
|
||||
|
||||
:param channels: number of input channels.
|
||||
:return: an nn.Module for normalization.
|
||||
"""
|
||||
return GroupNorm32(32, channels)
|
||||
|
||||
|
||||
def timestep_embedding(timesteps, dim, max_period=10000):
|
||||
"""
|
||||
Create sinusoidal timestep embeddings.
|
||||
|
||||
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
||||
These may be fractional.
|
||||
:param dim: the dimension of the output.
|
||||
:param max_period: controls the minimum frequency of the embeddings.
|
||||
:return: an [N x dim] Tensor of positional embeddings.
|
||||
"""
|
||||
half = dim // 2
|
||||
freqs = th.exp(
|
||||
-math.log(max_period) * th.arange(start=0, end=half, dtype=th.float32) / half
|
||||
).to(device=timesteps.device)
|
||||
args = timesteps[:, None].float() * freqs[None]
|
||||
embedding = th.cat([th.cos(args), th.sin(args)], dim=-1)
|
||||
if dim % 2:
|
||||
embedding = th.cat([embedding, th.zeros_like(embedding[:, :1])], dim=-1)
|
||||
return embedding
|
||||
|
||||
|
||||
def checkpoint(func, inputs, params, flag):
|
||||
"""
|
||||
Evaluate a function without caching intermediate activations, allowing for
|
||||
reduced memory at the expense of extra compute in the backward pass.
|
||||
|
||||
:param func: the function to evaluate.
|
||||
:param inputs: the argument sequence to pass to `func`.
|
||||
:param params: a sequence of parameters `func` depends on but does not
|
||||
explicitly take as arguments.
|
||||
:param flag: if False, disable gradient checkpointing.
|
||||
"""
|
||||
if flag:
|
||||
args = tuple(inputs) + tuple(params)
|
||||
return CheckpointFunction.apply(func, len(inputs), *args)
|
||||
else:
|
||||
return func(*inputs)
|
||||
|
||||
|
||||
class CheckpointFunction(th.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, run_function, length, *args):
|
||||
ctx.run_function = run_function
|
||||
ctx.input_tensors = list(args[:length])
|
||||
ctx.input_params = list(args[length:])
|
||||
with th.no_grad():
|
||||
output_tensors = ctx.run_function(*ctx.input_tensors)
|
||||
return output_tensors
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, *output_grads):
|
||||
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
||||
with th.enable_grad():
|
||||
# Fixes a bug where the first op in run_function modifies the
|
||||
# Tensor storage in place, which is not allowed for detach()'d
|
||||
# Tensors.
|
||||
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
||||
output_tensors = ctx.run_function(*shallow_copies)
|
||||
input_grads = th.autograd.grad(
|
||||
output_tensors,
|
||||
ctx.input_tensors + ctx.input_params,
|
||||
output_grads,
|
||||
allow_unused=True,
|
||||
)
|
||||
del ctx.input_tensors
|
||||
del ctx.input_params
|
||||
del output_tensors
|
||||
return (None, None) + input_grads
|
154
codes/models/diffusion/resample.py
Normal file
154
codes/models/diffusion/resample.py
Normal file
|
@ -0,0 +1,154 @@
|
|||
from abc import ABC, abstractmethod
|
||||
|
||||
import numpy as np
|
||||
import torch as th
|
||||
import torch.distributed as dist
|
||||
|
||||
|
||||
def create_named_schedule_sampler(name, diffusion):
|
||||
"""
|
||||
Create a ScheduleSampler from a library of pre-defined samplers.
|
||||
|
||||
:param name: the name of the sampler.
|
||||
:param diffusion: the diffusion object to sample for.
|
||||
"""
|
||||
if name == "uniform":
|
||||
return UniformSampler(diffusion)
|
||||
elif name == "loss-second-moment":
|
||||
return LossSecondMomentResampler(diffusion)
|
||||
else:
|
||||
raise NotImplementedError(f"unknown schedule sampler: {name}")
|
||||
|
||||
|
||||
class ScheduleSampler(ABC):
|
||||
"""
|
||||
A distribution over timesteps in the diffusion process, intended to reduce
|
||||
variance of the objective.
|
||||
|
||||
By default, samplers perform unbiased importance sampling, in which the
|
||||
objective's mean is unchanged.
|
||||
However, subclasses may override sample() to change how the resampled
|
||||
terms are reweighted, allowing for actual changes in the objective.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def weights(self):
|
||||
"""
|
||||
Get a numpy array of weights, one per diffusion step.
|
||||
|
||||
The weights needn't be normalized, but must be positive.
|
||||
"""
|
||||
|
||||
def sample(self, batch_size, device):
|
||||
"""
|
||||
Importance-sample timesteps for a batch.
|
||||
|
||||
:param batch_size: the number of timesteps.
|
||||
:param device: the torch device to save to.
|
||||
:return: a tuple (timesteps, weights):
|
||||
- timesteps: a tensor of timestep indices.
|
||||
- weights: a tensor of weights to scale the resulting losses.
|
||||
"""
|
||||
w = self.weights()
|
||||
p = w / np.sum(w)
|
||||
indices_np = np.random.choice(len(p), size=(batch_size,), p=p)
|
||||
indices = th.from_numpy(indices_np).long().to(device)
|
||||
weights_np = 1 / (len(p) * p[indices_np])
|
||||
weights = th.from_numpy(weights_np).float().to(device)
|
||||
return indices, weights
|
||||
|
||||
|
||||
class UniformSampler(ScheduleSampler):
|
||||
def __init__(self, diffusion):
|
||||
self.diffusion = diffusion
|
||||
self._weights = np.ones([diffusion.num_timesteps])
|
||||
|
||||
def weights(self):
|
||||
return self._weights
|
||||
|
||||
|
||||
class LossAwareSampler(ScheduleSampler):
|
||||
def update_with_local_losses(self, local_ts, local_losses):
|
||||
"""
|
||||
Update the reweighting using losses from a model.
|
||||
|
||||
Call this method from each rank with a batch of timesteps and the
|
||||
corresponding losses for each of those timesteps.
|
||||
This method will perform synchronization to make sure all of the ranks
|
||||
maintain the exact same reweighting.
|
||||
|
||||
:param local_ts: an integer Tensor of timesteps.
|
||||
:param local_losses: a 1D Tensor of losses.
|
||||
"""
|
||||
batch_sizes = [
|
||||
th.tensor([0], dtype=th.int32, device=local_ts.device)
|
||||
for _ in range(dist.get_world_size())
|
||||
]
|
||||
dist.all_gather(
|
||||
batch_sizes,
|
||||
th.tensor([len(local_ts)], dtype=th.int32, device=local_ts.device),
|
||||
)
|
||||
|
||||
# Pad all_gather batches to be the maximum batch size.
|
||||
batch_sizes = [x.item() for x in batch_sizes]
|
||||
max_bs = max(batch_sizes)
|
||||
|
||||
timestep_batches = [th.zeros(max_bs).to(local_ts) for bs in batch_sizes]
|
||||
loss_batches = [th.zeros(max_bs).to(local_losses) for bs in batch_sizes]
|
||||
dist.all_gather(timestep_batches, local_ts)
|
||||
dist.all_gather(loss_batches, local_losses)
|
||||
timesteps = [
|
||||
x.item() for y, bs in zip(timestep_batches, batch_sizes) for x in y[:bs]
|
||||
]
|
||||
losses = [x.item() for y, bs in zip(loss_batches, batch_sizes) for x in y[:bs]]
|
||||
self.update_with_all_losses(timesteps, losses)
|
||||
|
||||
@abstractmethod
|
||||
def update_with_all_losses(self, ts, losses):
|
||||
"""
|
||||
Update the reweighting using losses from a model.
|
||||
|
||||
Sub-classes should override this method to update the reweighting
|
||||
using losses from the model.
|
||||
|
||||
This method directly updates the reweighting without synchronizing
|
||||
between workers. It is called by update_with_local_losses from all
|
||||
ranks with identical arguments. Thus, it should have deterministic
|
||||
behavior to maintain state across workers.
|
||||
|
||||
:param ts: a list of int timesteps.
|
||||
:param losses: a list of float losses, one per timestep.
|
||||
"""
|
||||
|
||||
|
||||
class LossSecondMomentResampler(LossAwareSampler):
|
||||
def __init__(self, diffusion, history_per_term=10, uniform_prob=0.001):
|
||||
self.diffusion = diffusion
|
||||
self.history_per_term = history_per_term
|
||||
self.uniform_prob = uniform_prob
|
||||
self._loss_history = np.zeros(
|
||||
[diffusion.num_timesteps, history_per_term], dtype=np.float64
|
||||
)
|
||||
self._loss_counts = np.zeros([diffusion.num_timesteps], dtype=np.int)
|
||||
|
||||
def weights(self):
|
||||
if not self._warmed_up():
|
||||
return np.ones([self.diffusion.num_timesteps], dtype=np.float64)
|
||||
weights = np.sqrt(np.mean(self._loss_history ** 2, axis=-1))
|
||||
weights /= np.sum(weights)
|
||||
weights *= 1 - self.uniform_prob
|
||||
weights += self.uniform_prob / len(weights)
|
||||
return weights
|
||||
|
||||
def update_with_all_losses(self, ts, losses):
|
||||
for t, loss in zip(ts, losses):
|
||||
if self._loss_counts[t] == self.history_per_term:
|
||||
# Shift out the oldest loss term.
|
||||
self._loss_history[t, :-1] = self._loss_history[t, 1:]
|
||||
self._loss_history[t, -1] = loss
|
||||
else:
|
||||
self._loss_history[t, self._loss_counts[t]] = loss
|
||||
self._loss_counts[t] += 1
|
||||
|
||||
def _warmed_up(self):
|
||||
return (self._loss_counts == self.history_per_term).all()
|
215
codes/models/diffusion/rrdb_diffusion.py
Normal file
215
codes/models/diffusion/rrdb_diffusion.py
Normal file
|
@ -0,0 +1,215 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from models.arch_util import ConvGnLelu, default_init_weights, make_layer
|
||||
from models.diffusion.nn import timestep_embedding
|
||||
from trainer.networks import register_model
|
||||
from utils.util import checkpoint
|
||||
|
||||
|
||||
# Conditionally uses torch's checkpoint functionality if it is enabled in the opt file.
|
||||
|
||||
|
||||
class ResidualDenseBlock(nn.Module):
|
||||
"""Residual Dense Block.
|
||||
|
||||
Used in RRDB block in ESRGAN.
|
||||
|
||||
Args:
|
||||
mid_channels (int): Channel number of intermediate features.
|
||||
growth_channels (int): Channels for each growth.
|
||||
"""
|
||||
|
||||
def __init__(self, mid_channels=64, growth_channels=32, embedding=False, init_weight=.1):
|
||||
super(ResidualDenseBlock, self).__init__()
|
||||
self.embedding = embedding
|
||||
if embedding:
|
||||
self.first_conv = ConvGnLelu(mid_channels, mid_channels, activation=True, norm=False, bias=True)
|
||||
self.emb_layers = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
nn.Linear(
|
||||
mid_channels*4,
|
||||
mid_channels,
|
||||
),
|
||||
)
|
||||
for i in range(5):
|
||||
out_channels = mid_channels if i == 4 else growth_channels
|
||||
self.add_module(
|
||||
f'conv{i + 1}',
|
||||
nn.Conv2d(mid_channels + i * growth_channels, out_channels, 3,
|
||||
1, 1))
|
||||
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
||||
for i in range(4):
|
||||
default_init_weights(getattr(self, f'conv{i + 1}'), init_weight)
|
||||
default_init_weights(self.conv5, 0)
|
||||
|
||||
self.normalize = nn.GroupNorm(num_groups=8, num_channels=mid_channels)
|
||||
|
||||
def forward(self, x, emb):
|
||||
"""Forward function.
|
||||
|
||||
Args:
|
||||
x (Tensor): Input tensor with shape (n, c, h, w).
|
||||
|
||||
Returns:
|
||||
Tensor: Forward results.
|
||||
"""
|
||||
if self.embedding:
|
||||
x0 = self.first_conv(x)
|
||||
emb_out = self.emb_layers(emb).type(x0.dtype)
|
||||
while len(emb_out.shape) < len(x0.shape):
|
||||
emb_out = emb_out[..., None]
|
||||
x0 = x0 + emb_out
|
||||
else:
|
||||
x0 = x
|
||||
x1 = self.lrelu(self.conv1(x0))
|
||||
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
|
||||
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
|
||||
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
|
||||
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
||||
|
||||
return self.normalize(x5 * .2 + x)
|
||||
|
||||
|
||||
class RRDB(nn.Module):
|
||||
"""Residual in Residual Dense Block.
|
||||
|
||||
Used in RRDB-Net in ESRGAN.
|
||||
|
||||
Args:
|
||||
mid_channels (int): Channel number of intermediate features.
|
||||
growth_channels (int): Channels for each growth.
|
||||
"""
|
||||
|
||||
def __init__(self, mid_channels, growth_channels=32):
|
||||
super(RRDB, self).__init__()
|
||||
self.rdb1 = ResidualDenseBlock(mid_channels, growth_channels, embedding=True)
|
||||
self.rdb2 = ResidualDenseBlock(mid_channels, growth_channels)
|
||||
self.rdb3 = ResidualDenseBlock(mid_channels, growth_channels)
|
||||
self.normalize = nn.GroupNorm(num_groups=8, num_channels=mid_channels)
|
||||
self.residual_mult = nn.Parameter(torch.FloatTensor([.1]))
|
||||
|
||||
def forward(self, x, emb):
|
||||
"""Forward function.
|
||||
|
||||
Args:
|
||||
x (Tensor): Input tensor with shape (n, c, h, w).
|
||||
|
||||
Returns:
|
||||
Tensor: Forward results.
|
||||
"""
|
||||
out = self.rdb1(x, emb)
|
||||
out = self.rdb2(out, emb)
|
||||
out = self.rdb3(out, emb)
|
||||
|
||||
return self.normalize(out * self.residual_mult + x)
|
||||
|
||||
|
||||
class RRDBNet(nn.Module):
|
||||
"""Networks consisting of Residual in Residual Dense Block, which is used
|
||||
in ESRGAN.
|
||||
|
||||
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks.
|
||||
Currently, it supports x4 upsampling scale factor.
|
||||
|
||||
Args:
|
||||
in_channels (int): Channel number of inputs.
|
||||
out_channels (int): Channel number of outputs.
|
||||
mid_channels (int): Channel number of intermediate features.
|
||||
Default: 64
|
||||
num_blocks (int): Block number in the trunk network. Defaults: 23
|
||||
growth_channels (int): Channels for each growth. Default: 32.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
mid_channels=64,
|
||||
num_blocks=23,
|
||||
growth_channels=32,
|
||||
body_block=RRDB,
|
||||
):
|
||||
super(RRDBNet, self).__init__()
|
||||
self.num_blocks = num_blocks
|
||||
self.in_channels = in_channels
|
||||
self.mid_channels = mid_channels
|
||||
|
||||
# The diffusion RRDB starts with a full resolution image and downsamples into a .25 working space
|
||||
self.input_block = ConvGnLelu(in_channels, mid_channels, kernel_size=7, stride=1, activation=True, norm=True, bias=True)
|
||||
self.down1 = ConvGnLelu(mid_channels, mid_channels, kernel_size=3, stride=2, activation=True, norm=True, bias=True)
|
||||
self.down2 = ConvGnLelu(mid_channels, mid_channels, kernel_size=3, stride=2, activation=True, norm=True, bias=True)
|
||||
|
||||
# Guided diffusion uses a time embedding.
|
||||
time_embed_dim = mid_channels * 4
|
||||
self.time_embed = nn.Sequential(
|
||||
nn.Linear(mid_channels, time_embed_dim),
|
||||
nn.SiLU(),
|
||||
nn.Linear(time_embed_dim, time_embed_dim),
|
||||
)
|
||||
|
||||
self.body = make_layer(
|
||||
body_block,
|
||||
num_blocks,
|
||||
mid_channels=mid_channels,
|
||||
growth_channels=growth_channels)
|
||||
|
||||
self.conv_body = nn.Conv2d(self.mid_channels, self.mid_channels, 3, 1, 1)
|
||||
# upsample
|
||||
self.conv_up1 = nn.Conv2d(self.mid_channels, self.mid_channels, 3, 1, 1)
|
||||
self.conv_up2 = nn.Conv2d(self.mid_channels*2, self.mid_channels, 3, 1, 1)
|
||||
self.conv_up3 = None
|
||||
self.conv_hr = nn.Conv2d(self.mid_channels*2, self.mid_channels, 3, 1, 1)
|
||||
self.conv_last = nn.Conv2d(self.mid_channels, out_channels, 3, 1, 1)
|
||||
|
||||
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
||||
self.normalize = nn.GroupNorm(num_groups=8, num_channels=self.mid_channels)
|
||||
|
||||
for m in [
|
||||
self.conv_body, self.conv_up1,
|
||||
self.conv_up2, self.conv_hr
|
||||
]:
|
||||
if m is not None:
|
||||
default_init_weights(m, 1.0)
|
||||
default_init_weights(self.conv_last, 0)
|
||||
|
||||
def forward(self, x, timesteps, low_res=None):
|
||||
emb = self.time_embed(timestep_embedding(timesteps, self.mid_channels))
|
||||
|
||||
_, _, new_height, new_width = x.shape
|
||||
upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear")
|
||||
x = torch.cat([x, upsampled], dim=1)
|
||||
|
||||
d1 = self.input_block(x)
|
||||
d2 = self.down1(d1)
|
||||
feat = self.down2(d2)
|
||||
for bl in self.body:
|
||||
feat = checkpoint(bl, feat, emb)
|
||||
feat = feat[:, :self.mid_channels]
|
||||
body_feat = self.conv_body(feat)
|
||||
feat = self.normalize(feat + body_feat)
|
||||
|
||||
# upsample
|
||||
out = torch.cat([self.lrelu(
|
||||
self.normalize(self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest')))),
|
||||
d2], dim=1)
|
||||
out = torch.cat([self.lrelu(
|
||||
self.normalize(self.conv_up2(F.interpolate(out, scale_factor=2, mode='nearest')))),
|
||||
d1], dim=1)
|
||||
out = self.conv_last(self.normalize(self.lrelu(self.conv_hr(out))))
|
||||
|
||||
return out
|
||||
|
||||
|
||||
@register_model
|
||||
def register_rrdb_diffusion(opt_net, opt):
|
||||
return RRDBNet(**opt_net['args'])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
model = RRDBNet(6,6)
|
||||
x = torch.randn(1,3,128,128)
|
||||
l = torch.randn(1,3,32,32)
|
||||
t = torch.LongTensor([555])
|
||||
y = model(x, t, l)
|
||||
print(y.shape, y.mean(), y.std(), y.min(), y.max())
|
|
@ -14,6 +14,9 @@ from data import create_dataloader, create_dataset
|
|||
from trainer.ExtensibleTrainer import ExtensibleTrainer
|
||||
from time import time
|
||||
|
||||
from utils.util import opt_get
|
||||
|
||||
|
||||
def init_dist(backend, **kwargs):
|
||||
# These packages have globals that screw with Windows, so only import them if needed.
|
||||
import torch.distributed as dist
|
||||
|
@ -31,8 +34,8 @@ class Trainer:
|
|||
|
||||
def init(self, opt, launcher, all_networks={}):
|
||||
self._profile = False
|
||||
self.val_compute_psnr = opt['eval']['compute_psnr'] if 'compute_psnr' in opt['eval'].keys() else True
|
||||
self.val_compute_fea = opt['eval']['compute_fea'] if 'compute_fea' in opt['eval'].keys() else True
|
||||
self.val_compute_psnr = opt_get(opt, ['eval', 'compute_psnr'], False)
|
||||
self.val_compute_fea = opt_get(opt, ['eval', 'compute_fea'], False)
|
||||
|
||||
#### loading resume state if exists
|
||||
if opt['path'].get('resume_state', None):
|
||||
|
@ -133,7 +136,7 @@ class Trainer:
|
|||
|
||||
### Evaluators
|
||||
self.evaluators = []
|
||||
if 'evaluators' in opt['eval'].keys():
|
||||
if 'eval' in opt.keys() and 'evaluators' in opt['eval'].keys():
|
||||
for ev_key, ev_opt in opt['eval']['evaluators'].items():
|
||||
self.evaluators.append(create_evaluator(self.model.networks[ev_opt['for']],
|
||||
ev_opt, self.model.env))
|
||||
|
@ -295,7 +298,7 @@ class Trainer:
|
|||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_imagenet_resnet50_yt_pretrained.yml')
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_imgset_rrdb_diffusion.yml')
|
||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
||||
parser.add_argument('--local_rank', type=int, default=0)
|
||||
args = parser.parse_args()
|
||||
|
|
|
@ -13,7 +13,7 @@ from trainer.steps import ConfigurableStep
|
|||
from trainer.experiments.experiments import get_experiment_for_name
|
||||
import torchvision.utils as utils
|
||||
|
||||
from utils.util import opt_get
|
||||
from utils.util import opt_get, denormalize
|
||||
|
||||
logger = logging.getLogger('base')
|
||||
|
||||
|
@ -259,10 +259,15 @@ class ExtensibleTrainer(BaseModel):
|
|||
|
||||
# Record visual outputs for usage in debugging and testing.
|
||||
if 'visuals' in self.opt['logger'].keys() and self.rank <= 0 and step % self.opt['logger']['visual_debug_rate'] == 0:
|
||||
denorm = 'image_normalization_range' in self.opt.keys()
|
||||
denorm_range = opt_get(self.opt, ['image_normalization_range'], None)
|
||||
if denorm_range:
|
||||
denorm_range = tuple(denorm_range)
|
||||
def fix_image(img):
|
||||
if img.shape[1] > 3:
|
||||
img = img[:, :3, :, :]
|
||||
if opt_get(self.opt, ['logger', 'reverse_n1_to_1'], False):
|
||||
img = (img + 1) / 2
|
||||
if opt_get(self.opt, ['logger', 'reverse_imagenet_norm'], False):
|
||||
img = denormalize(img)
|
||||
return img
|
||||
|
||||
sample_save_path = os.path.join(self.opt['path']['models'], "..", "visual_dbg")
|
||||
for v in self.opt['logger']['visuals']:
|
||||
if v not in state.keys():
|
||||
|
@ -270,16 +275,13 @@ class ExtensibleTrainer(BaseModel):
|
|||
for i, dbgv in enumerate(state[v]):
|
||||
if 'recurrent_visual_indices' in self.opt['logger'].keys() and len(dbgv.shape)==5:
|
||||
for rvi in self.opt['logger']['recurrent_visual_indices']:
|
||||
rdbgv = dbgv[:, rvi]
|
||||
if rdbgv.shape[1] > 3:
|
||||
rdbgv = rdbgv[:, :3, :, :]
|
||||
rdbgv = fix_image(dbgv[:, rvi])
|
||||
os.makedirs(os.path.join(sample_save_path, v), exist_ok=True)
|
||||
utils.save_image(rdbgv.float(), os.path.join(sample_save_path, v, "%05i_%02i_%02i.png" % (step, rvi, i)), normalize=denorm, range=denorm_range)
|
||||
utils.save_image(rdbgv.float(), os.path.join(sample_save_path, v, "%05i_%02i_%02i.png" % (step, rvi, i)))
|
||||
else:
|
||||
if dbgv.shape[1] > 3:
|
||||
dbgv = dbgv[:,:3,:,:]
|
||||
dbgv = fix_image(dbgv)
|
||||
os.makedirs(os.path.join(sample_save_path, v), exist_ok=True)
|
||||
utils.save_image(dbgv.float(), os.path.join(sample_save_path, v, "%05i_%02i.png" % (step, i)), normalize=denorm, range=denorm_range)
|
||||
utils.save_image(dbgv.float(), os.path.join(sample_save_path, v, "%05i_%02i.png" % (step, i)))
|
||||
# Some models have their own specific visual debug routines.
|
||||
for net_name, net in self.networks.items():
|
||||
if hasattr(net.module, "visual_dbg"):
|
||||
|
|
|
@ -55,7 +55,7 @@ class CreateInjectorError(Exception):
|
|||
f'{available}')
|
||||
|
||||
|
||||
# Injectors are a way to sythesize data within a step that can then be used (and reused) by loss functions.
|
||||
# Injectors are a way to synthesize data within a step that can then be used (and reused) by loss functions.
|
||||
def create_injector(opt_inject, env):
|
||||
injectors = find_registered_injectors()
|
||||
type = opt_inject['type']
|
||||
|
|
45
codes/trainer/injectors/gaussian_diffusion_injector.py
Normal file
45
codes/trainer/injectors/gaussian_diffusion_injector.py
Normal file
|
@ -0,0 +1,45 @@
|
|||
import torch
|
||||
|
||||
from models.diffusion.gaussian_diffusion import GaussianDiffusion, get_named_beta_schedule
|
||||
from models.diffusion.resample import create_named_schedule_sampler
|
||||
from trainer.inject import Injector
|
||||
from utils.util import opt_get
|
||||
|
||||
|
||||
# Injects a gaussian diffusion loss as described by OpenAIs "Improved Denoising Diffusion Probabilistic Models" paper.
|
||||
# Largely uses OpenAI's own code to do so (all code from models.diffusion.*)
|
||||
class GaussianDiffusionInjector(Injector):
|
||||
def __init__(self, opt, env):
|
||||
super().__init__(opt, env)
|
||||
self.generator = opt['generator']
|
||||
opt['diffusion_args']['betas'] = get_named_beta_schedule(**opt['beta_schedule'])
|
||||
self.diffusion = GaussianDiffusion(**opt['diffusion_args'])
|
||||
self.schedule_sampler = create_named_schedule_sampler(opt['sampler_type'], self.diffusion)
|
||||
self.model_input_keys = opt_get(opt, ['model_input_keys'], [])
|
||||
|
||||
def forward(self, state):
|
||||
gen = self.env['generators'][self.opt['generator']]
|
||||
hq = state[self.input]
|
||||
model_inputs = {k: state[v] for k, v in self.model_input_keys.items()}
|
||||
t, weights = self.schedule_sampler.sample(hq.shape[0], hq.device)
|
||||
return {self.output: self.diffusion.training_losses(gen, hq, t, model_kwargs=model_inputs)['loss'] * weights}
|
||||
|
||||
|
||||
# Performs inference using a network trained to predict a reverse diffusion process, which nets a image.
|
||||
class GaussianDiffusionInferenceInjector(Injector):
|
||||
def __init__(self, opt, env):
|
||||
super().__init__(opt, env)
|
||||
self.generator = opt['generator']
|
||||
self.output_shape = opt['output_shape']
|
||||
opt['diffusion_args']['betas'] = get_named_beta_schedule(**opt['beta_schedule'])
|
||||
self.diffusion = GaussianDiffusion(**opt['diffusion_args'])
|
||||
self.model_input_keys = opt_get(opt, ['model_input_keys'], [])
|
||||
|
||||
def forward(self, state):
|
||||
gen = self.env['generators'][self.opt['generator']]
|
||||
batch_size = self.output_shape[0]
|
||||
model_inputs = {k: state[v][:batch_size] for k, v in self.model_input_keys.items()}
|
||||
gen.eval()
|
||||
with torch.no_grad():
|
||||
gen = self.diffusion.p_sample_loop(gen, self.output_shape, model_kwargs=model_inputs)
|
||||
return {self.output: gen}
|
|
@ -179,7 +179,7 @@ class SrPixLoss(ConfigurableLoss):
|
|||
return loss.mean()
|
||||
|
||||
|
||||
# Loss defined by averaging the input tensor across all dimensions an optionally inverting it.
|
||||
# Loss defined by averaging the input tensor across all dimensions and optionally inverting it.
|
||||
class DirectLoss(ConfigurableLoss):
|
||||
def __init__(self, opt, env):
|
||||
super(DirectLoss, self).__init__(opt, env)
|
||||
|
|
|
@ -401,3 +401,10 @@ def opt_get(opt, keys, default=None):
|
|||
if ret is None:
|
||||
return default
|
||||
return ret
|
||||
|
||||
|
||||
def denormalize(x, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
|
||||
ten = x.clone().permute(1, 2, 3, 0)
|
||||
for t, m, s in zip(ten, mean, std):
|
||||
t.mul_(s).add_(m)
|
||||
return torch.clamp(ten, 0, 1).permute(3, 0, 1, 2)
|
Loading…
Reference in New Issue
Block a user