forked from mrq/DL-Art-School
VQVAE
This commit is contained in:
parent
01a589e712
commit
61a86a3c1e
0
codes/models/vqvae/__init__.py
Normal file
0
codes/models/vqvae/__init__.py
Normal file
249
codes/models/vqvae/vqvae.py
Normal file
249
codes/models/vqvae/vqvae.py
Normal file
|
@ -0,0 +1,249 @@
|
|||
# Copyright 2018 The Sonnet Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
|
||||
# Borrowed from https://github.com/rosinality/vq-vae-2-pytorch
|
||||
# Which was itself orrowed from https://github.com/deepmind/sonnet
|
||||
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
import torch.distributed as distributed
|
||||
|
||||
from trainer.networks import register_model
|
||||
from utils.util import checkpoint, opt_get
|
||||
|
||||
|
||||
class Quantize(nn.Module):
|
||||
def __init__(self, dim, n_embed, decay=0.99, eps=1e-5):
|
||||
super().__init__()
|
||||
|
||||
self.dim = dim
|
||||
self.n_embed = n_embed
|
||||
self.decay = decay
|
||||
self.eps = eps
|
||||
|
||||
embed = torch.randn(dim, n_embed)
|
||||
self.register_buffer("embed", embed)
|
||||
self.register_buffer("cluster_size", torch.zeros(n_embed))
|
||||
self.register_buffer("embed_avg", embed.clone())
|
||||
|
||||
def forward(self, input):
|
||||
flatten = input.reshape(-1, self.dim)
|
||||
dist = (
|
||||
flatten.pow(2).sum(1, keepdim=True)
|
||||
- 2 * flatten @ self.embed
|
||||
+ self.embed.pow(2).sum(0, keepdim=True)
|
||||
)
|
||||
_, embed_ind = (-dist).max(1)
|
||||
embed_onehot = F.one_hot(embed_ind, self.n_embed).type(flatten.dtype)
|
||||
embed_ind = embed_ind.view(*input.shape[:-1])
|
||||
quantize = self.embed_code(embed_ind)
|
||||
|
||||
if self.training:
|
||||
embed_onehot_sum = embed_onehot.sum(0)
|
||||
embed_sum = flatten.transpose(0, 1) @ embed_onehot
|
||||
|
||||
if distributed.is_initialized() and distributed.get_world_size() > 1:
|
||||
distributed.all_reduce(embed_onehot_sum)
|
||||
distributed.all_reduce(embed_sum)
|
||||
|
||||
self.cluster_size.data.mul_(self.decay).add_(
|
||||
embed_onehot_sum, alpha=1 - self.decay
|
||||
)
|
||||
self.embed_avg.data.mul_(self.decay).add_(embed_sum, alpha=1 - self.decay)
|
||||
n = self.cluster_size.sum()
|
||||
cluster_size = (
|
||||
(self.cluster_size + self.eps) / (n + self.n_embed * self.eps) * n
|
||||
)
|
||||
embed_normalized = self.embed_avg / cluster_size.unsqueeze(0)
|
||||
self.embed.data.copy_(embed_normalized)
|
||||
|
||||
diff = (quantize.detach() - input).pow(2).mean()
|
||||
quantize = input + (quantize - input).detach()
|
||||
|
||||
return quantize, diff, embed_ind
|
||||
|
||||
def embed_code(self, embed_id):
|
||||
return F.embedding(embed_id, self.embed.transpose(0, 1))
|
||||
|
||||
|
||||
class ResBlock(nn.Module):
|
||||
def __init__(self, in_channel, channel):
|
||||
super().__init__()
|
||||
|
||||
self.conv = nn.Sequential(
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(in_channel, channel, 3, padding=1),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(channel, in_channel, 1),
|
||||
)
|
||||
|
||||
def forward(self, input):
|
||||
out = self.conv(input)
|
||||
out += input
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(self, in_channel, channel, n_res_block, n_res_channel, stride):
|
||||
super().__init__()
|
||||
|
||||
if stride == 4:
|
||||
blocks = [
|
||||
nn.Conv2d(in_channel, channel // 2, 4, stride=2, padding=1),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(channel // 2, channel, 4, stride=2, padding=1),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(channel, channel, 3, padding=1),
|
||||
]
|
||||
|
||||
elif stride == 2:
|
||||
blocks = [
|
||||
nn.Conv2d(in_channel, channel // 2, 4, stride=2, padding=1),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(channel // 2, channel, 3, padding=1),
|
||||
]
|
||||
|
||||
for i in range(n_res_block):
|
||||
blocks.append(ResBlock(channel, n_res_channel))
|
||||
|
||||
blocks.append(nn.ReLU(inplace=True))
|
||||
|
||||
self.blocks = nn.Sequential(*blocks)
|
||||
|
||||
def forward(self, input):
|
||||
return self.blocks(input)
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(
|
||||
self, in_channel, out_channel, channel, n_res_block, n_res_channel, stride
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
blocks = [nn.Conv2d(in_channel, channel, 3, padding=1)]
|
||||
|
||||
for i in range(n_res_block):
|
||||
blocks.append(ResBlock(channel, n_res_channel))
|
||||
|
||||
blocks.append(nn.ReLU(inplace=True))
|
||||
|
||||
if stride == 4:
|
||||
blocks.extend(
|
||||
[
|
||||
nn.ConvTranspose2d(channel, channel // 2, 4, stride=2, padding=1),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.ConvTranspose2d(
|
||||
channel // 2, out_channel, 4, stride=2, padding=1
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
elif stride == 2:
|
||||
blocks.append(
|
||||
nn.ConvTranspose2d(channel, out_channel, 4, stride=2, padding=1)
|
||||
)
|
||||
|
||||
self.blocks = nn.Sequential(*blocks)
|
||||
|
||||
def forward(self, input):
|
||||
return self.blocks(input)
|
||||
|
||||
|
||||
class VQVAE(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channel=3,
|
||||
channel=128,
|
||||
n_res_block=2,
|
||||
n_res_channel=32,
|
||||
codebook_dim=64,
|
||||
codebook_size=512,
|
||||
decay=0.99,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.enc_b = Encoder(in_channel, channel, n_res_block, n_res_channel, stride=4)
|
||||
self.enc_t = Encoder(channel, channel, n_res_block, n_res_channel, stride=2)
|
||||
self.quantize_conv_t = nn.Conv2d(channel, codebook_dim, 1)
|
||||
self.quantize_t = Quantize(codebook_dim, codebook_size)
|
||||
self.dec_t = Decoder(
|
||||
codebook_dim, codebook_dim, channel, n_res_block, n_res_channel, stride=2
|
||||
)
|
||||
self.quantize_conv_b = nn.Conv2d(codebook_dim + channel, codebook_dim, 1)
|
||||
self.quantize_b = Quantize(codebook_dim, codebook_size)
|
||||
self.upsample_t = nn.ConvTranspose2d(
|
||||
codebook_dim, codebook_dim, 4, stride=2, padding=1
|
||||
)
|
||||
self.dec = Decoder(
|
||||
codebook_dim + codebook_dim,
|
||||
in_channel,
|
||||
channel,
|
||||
n_res_block,
|
||||
n_res_channel,
|
||||
stride=4,
|
||||
)
|
||||
|
||||
def forward(self, input):
|
||||
quant_t, quant_b, diff, _, _ = self.encode(input)
|
||||
dec = self.decode(quant_t, quant_b)
|
||||
|
||||
return dec, diff
|
||||
|
||||
def encode(self, input):
|
||||
enc_b = checkpoint(self.enc_b, input)
|
||||
enc_t = checkpoint(self.enc_t, enc_b)
|
||||
|
||||
quant_t = self.quantize_conv_t(enc_t).permute(0, 2, 3, 1)
|
||||
quant_t, diff_t, id_t = self.quantize_t(quant_t)
|
||||
quant_t = quant_t.permute(0, 3, 1, 2)
|
||||
diff_t = diff_t.unsqueeze(0)
|
||||
|
||||
dec_t = checkpoint(self.dec_t, quant_t)
|
||||
enc_b = torch.cat([dec_t, enc_b], 1)
|
||||
|
||||
quant_b = checkpoint(self.quantize_conv_b, enc_b).permute(0, 2, 3, 1)
|
||||
quant_b, diff_b, id_b = self.quantize_b(quant_b)
|
||||
quant_b = quant_b.permute(0, 3, 1, 2)
|
||||
diff_b = diff_b.unsqueeze(0)
|
||||
|
||||
return quant_t, quant_b, diff_t + diff_b, id_t, id_b
|
||||
|
||||
def decode(self, quant_t, quant_b):
|
||||
upsample_t = self.upsample_t(quant_t)
|
||||
quant = torch.cat([upsample_t, quant_b], 1)
|
||||
dec = checkpoint(self.dec, quant)
|
||||
|
||||
return dec
|
||||
|
||||
def decode_code(self, code_t, code_b):
|
||||
quant_t = self.quantize_t.embed_code(code_t)
|
||||
quant_t = quant_t.permute(0, 3, 1, 2)
|
||||
quant_b = self.quantize_b.embed_code(code_b)
|
||||
quant_b = quant_b.permute(0, 3, 1, 2)
|
||||
|
||||
dec = self.decode(quant_t, quant_b)
|
||||
|
||||
return dec
|
||||
|
||||
|
||||
@register_model
|
||||
def register_vqvae(opt_net, opt):
|
||||
kw = opt_get(opt_net, ['kwargs'], {})
|
||||
return VQVAE(**kw)
|
|
@ -14,14 +14,14 @@ def main():
|
|||
split_img = False
|
||||
opt = {}
|
||||
opt['n_thread'] = 4
|
||||
opt['compression_level'] = 90 # JPEG compression quality rating.
|
||||
opt['compression_level'] = 98 # JPEG compression quality rating.
|
||||
# CV_IMWRITE_PNG_COMPRESSION from 0 to 9. A higher value means a smaller size and longer
|
||||
# compression time. If read raw images during training, use 0 for faster IO speed.
|
||||
|
||||
opt['dest'] = 'file'
|
||||
opt['input_folder'] = ['F:\\4k6k\\datasets\\ns_images\\vixen\\vix_cropped']
|
||||
opt['save_folder'] = 'F:\\4k6k\\datasets\\ns_images\\video_512_cropped'
|
||||
opt['imgsize'] = 512
|
||||
opt['input_folder'] = ['F:\\4k6k\\datasets\\ns_images\\imagesets\\imageset_1024_square_with_new']
|
||||
opt['save_folder'] = 'F:\\4k6k\\datasets\\ns_images\\imagesets\\imageset_256_full'
|
||||
opt['imgsize'] = 256
|
||||
#opt['bottom_crop'] = 120
|
||||
|
||||
save_folder = opt['save_folder']
|
||||
|
|
|
@ -295,7 +295,7 @@ class Trainer:
|
|||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_pixpro_resnet.yml')
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_imgset_stylesr.yml')
|
||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
||||
parser.add_argument('--local_rank', type=int, default=0)
|
||||
args = parser.parse_args()
|
||||
|
|
Loading…
Reference in New Issue
Block a user