forked from mrq/DL-Art-School
more work
This commit is contained in:
parent
f541610256
commit
6c8032b4be
|
@ -117,8 +117,8 @@ class MusicGenerator(nn.Module):
|
|||
layer_drop=.1,
|
||||
unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training.
|
||||
# Masking parameters.
|
||||
time_mask_percent_max=.4,
|
||||
frequency_mask_percent_max=.4,
|
||||
frequency_mask_percent_max=0,
|
||||
time_mask_percent_max=0,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
|
@ -172,7 +172,7 @@ class MusicGenerator(nn.Module):
|
|||
def do_masking(self, truth):
|
||||
b, c, s = truth.shape
|
||||
mask = torch.ones_like(truth)
|
||||
if random.random() < .5:
|
||||
if self.frequency_mask_percent_mask > 0:
|
||||
# Frequency mask
|
||||
cs = random.randint(0, c-10)
|
||||
ce = min(c-1, cs+random.randint(1, int(self.frequency_mask_percent_mask*c)))
|
||||
|
|
|
@ -219,6 +219,12 @@ class ContrastiveAudio(nn.Module):
|
|||
def update_for_step(self, step, __):
|
||||
self.to_latent2.weight.data = self.to_latent2.weight.data * .99 + self.to_latent.weight.data * .01
|
||||
|
||||
def project(self, mel):
|
||||
h1 = self.emb(mel).permute(0, 2, 1)
|
||||
h1 = self.transformer(h1)
|
||||
h1 = self.to_latent(h1)
|
||||
return h1
|
||||
|
||||
def forward(
|
||||
self,
|
||||
mel_input1,
|
||||
|
|
|
@ -17,6 +17,7 @@ from data.audio.paired_voice_audio_dataset import load_tsv_aligned_codes
|
|||
from data.audio.unsupervised_audio_dataset import load_audio
|
||||
from data.audio.voice_tokenizer import VoiceBpeTokenizer
|
||||
from models.audio.music.unet_diffusion_waveform_gen import DiffusionWaveformGen
|
||||
from models.clip.contrastive_audio import ContrastiveAudio
|
||||
from models.clip.mel_text_clip import MelTextCLIP
|
||||
from models.audio.tts.tacotron2 import text_to_sequence
|
||||
from models.diffusion.gaussian_diffusion import get_named_beta_schedule
|
||||
|
@ -58,7 +59,9 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
|||
num_heads=8,
|
||||
dropout=0, kernel_size=3, scale_factor=2, time_embed_dim_multiplier=4, unconditioned_percentage=0)
|
||||
self.spec_decoder.load_state_dict(torch.load('../experiments/music_waveform_gen.pth', map_location=torch.device('cpu')))
|
||||
self.local_modules = {'spec_decoder': self.spec_decoder}
|
||||
self.projector = ContrastiveAudio(model_dim=512, transformer_heads=8, dropout=0, encoder_depth=8, mel_channels=256)
|
||||
#self.projector.load_state_dict(torch.load('../experiments/music_eval_projector.pth', map_location=torch.device('cpu')))
|
||||
self.local_modules = {'spec_decoder': self.spec_decoder, 'projector': self.projector}
|
||||
|
||||
if mode == 'spec_decode':
|
||||
self.diffusion_fn = self.perform_diffusion_spec_decode
|
||||
|
@ -127,20 +130,11 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
|||
|
||||
return gen, real_resampled, sample_rate
|
||||
|
||||
def load_projector(self):
|
||||
# TODO: implement for music.
|
||||
model = MelTextCLIP(dim_text=512, dim_latent=512, dim_speech=512, num_text_tokens=148, text_enc_depth=8,
|
||||
text_seq_len=400, text_heads=8, speech_enc_depth=10, speech_heads=8, speech_seq_len=1000,
|
||||
text_mask_percentage=.15, voice_mask_percentage=.15)
|
||||
weights = torch.load('../experiments/clip_text_to_voice_for_speech_fid.pth')
|
||||
model.load_state_dict(weights)
|
||||
return model
|
||||
|
||||
def project(self, projector, sample, sample_rate):
|
||||
# TODO: implement for music.
|
||||
def project(self, sample, sample_rate):
|
||||
sample = torchaudio.functional.resample(sample, sample_rate, 22050)
|
||||
mel = wav_to_mel(sample)
|
||||
return projector.get_speech_projection(mel).squeeze(0) # Getting rid of the batch dimension means it's just [hidden_dim]
|
||||
mel = self.spec_fn({'in': sample})['out']
|
||||
projection = self.projector.project(mel)
|
||||
return projection.squeeze(0) # Getting rid of the batch dimension means it's just [hidden_dim]
|
||||
|
||||
def compute_frechet_distance(self, proj1, proj2):
|
||||
# I really REALLY FUCKING HATE that this is going to numpy. Why does "pytorch_fid" operate in numpy land. WHY?
|
||||
|
@ -156,41 +150,35 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
|||
save_path = osp.join(self.env['base_path'], "../", "audio_eval", str(self.env["step"]))
|
||||
os.makedirs(save_path, exist_ok=True)
|
||||
|
||||
#projector = self.load_projector().to(self.env['device'])
|
||||
#projector.eval()
|
||||
self.projector = self.projector.to(self.dev)
|
||||
self.projector.eval()
|
||||
|
||||
# Attempt to fix the random state as much as possible. RNG state will be restored before returning.
|
||||
rng_state = torch.get_rng_state()
|
||||
torch.manual_seed(5)
|
||||
self.model.eval()
|
||||
|
||||
frechet_distance = 0
|
||||
with torch.no_grad():
|
||||
gen_projections = []
|
||||
real_projections = []
|
||||
for i in tqdm(list(range(0, len(self.data), self.skip))):
|
||||
path = self.data[i + self.env['rank']]
|
||||
audio = load_audio(path, 22050).to(self.dev)
|
||||
mel = self.spec_fn({'in': audio})['out']
|
||||
mel_norm = (mel + mel.min().abs())
|
||||
mel_norm = mel_norm / mel_norm.max(dim=-1, keepdim=True).values
|
||||
torchvision.utils.save_image(mel_norm.unsqueeze(1), 'mel.png')
|
||||
audio = audio[:, :22050*5]
|
||||
sample, ref, sample_rate = self.diffusion_fn(audio)
|
||||
|
||||
#gen_projections.append(self.project(projector, sample, sample_rate).cpu()) # Store on CPU to avoid wasting GPU memory.
|
||||
#real_projections.append(self.project(projector, ref, sample_rate).cpu())
|
||||
gen_projections.append(self.project(sample, sample_rate).cpu()) # Store on CPU to avoid wasting GPU memory.
|
||||
real_projections.append(self.project(ref, sample_rate).cpu())
|
||||
|
||||
torchaudio.save(os.path.join(save_path, f"{self.env['rank']}_{i}_gen.wav"), sample.squeeze(0).cpu(), sample_rate)
|
||||
torchaudio.save(os.path.join(save_path, f"{self.env['rank']}_{i}_real.wav"), ref.cpu(), sample_rate)
|
||||
#gen_projections = torch.stack(gen_projections, dim=0)
|
||||
#real_projections = torch.stack(real_projections, dim=0)
|
||||
#frechet_distance = torch.tensor(self.compute_frechet_distance(gen_projections, real_projections), device=self.env['device'])
|
||||
gen_projections = torch.stack(gen_projections, dim=0)
|
||||
real_projections = torch.stack(real_projections, dim=0)
|
||||
frechet_distance = torch.tensor(self.compute_frechet_distance(gen_projections, real_projections), device=self.env['device'])
|
||||
|
||||
#if distributed.is_initialized() and distributed.get_world_size() > 1:
|
||||
# distributed.all_reduce(frechet_distance)
|
||||
# frechet_distance = frechet_distance / distributed.get_world_size()
|
||||
# distributed.all_reduce(intelligibility_loss)
|
||||
# intelligibility_loss = intelligibility_loss / distributed.get_world_size()
|
||||
if distributed.is_initialized() and distributed.get_world_size() > 1:
|
||||
distributed.all_reduce(frechet_distance)
|
||||
frechet_distance = frechet_distance / distributed.get_world_size()\
|
||||
|
||||
self.model.train()
|
||||
torch.set_rng_state(rng_state)
|
||||
|
@ -205,8 +193,8 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
|||
if __name__ == '__main__':
|
||||
diffusion = load_model_from_config('X:\\dlas\\experiments\\train_music_gap_filler.yml', 'generator',
|
||||
also_load_savepoint=False,
|
||||
load_path='X:\\dlas\\experiments\\train_music_gap_filler\\models\\5000_generator.pth').cuda()
|
||||
opt_eval = {'path': 'Y:\\split\\yt-music-eval', 'diffusion_steps': 100,
|
||||
load_path='X:\\dlas\\experiments\\train_music_gap_filler\\models\\14000_generator.pth').cuda()
|
||||
opt_eval = {'path': 'Y:\\split\\yt-music-eval', 'diffusion_steps': 500,
|
||||
'conditioning_free': False, 'conditioning_free_k': 1,
|
||||
'diffusion_schedule': 'linear', 'diffusion_type': 'gap_fill_freq'}
|
||||
env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval_music', 'step': 2, 'device': 'cuda', 'opt': {}}
|
||||
|
|
Loading…
Reference in New Issue
Block a user