forked from mrq/DL-Art-School
forgot other customizations I want to keep
This commit is contained in:
parent
8f40108f5b
commit
7198bd8bd0
|
@ -196,13 +196,14 @@ class TransformerDiffusion(nn.Module):
|
||||||
|
|
||||||
|
|
||||||
class TransformerDiffusionWithQuantizer(nn.Module):
|
class TransformerDiffusionWithQuantizer(nn.Module):
|
||||||
def __init__(self, train_quantizer_reconstruction_until=-1, freeze_quantizer_until=10000, **kwargs):
|
def __init__(self, quantizer_dims=[1024], train_quantizer_reconstruction_until=-1, freeze_quantizer_until=10000, **kwargs):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.internal_step = 0
|
self.internal_step = 0
|
||||||
self.freeze_quantizer_until = freeze_quantizer_until
|
self.freeze_quantizer_until = freeze_quantizer_until
|
||||||
self.train_quantizer_reconstruction_until = train_quantizer_reconstruction_until
|
self.train_quantizer_reconstruction_until = train_quantizer_reconstruction_until
|
||||||
self.diff = TransformerDiffusion(**kwargs)
|
self.diff = TransformerDiffusion(**kwargs)
|
||||||
self.quantizer = MusicQuantizer2(inp_channels=256, inner_dim=[1024], codevector_dim=1024, codebook_size=256,
|
self.quantizer = MusicQuantizer2(inp_channels=kwargs['in_channels'], inner_dim=quantizer_dims,
|
||||||
|
codevector_dim=quantizer_dims[0], codebook_size=256,
|
||||||
codebook_groups=2, max_gumbel_temperature=4, min_gumbel_temperature=.5)
|
codebook_groups=2, max_gumbel_temperature=4, min_gumbel_temperature=.5)
|
||||||
self.quantizer.quantizer.temperature = self.quantizer.min_gumbel_temperature
|
self.quantizer.quantizer.temperature = self.quantizer.min_gumbel_temperature
|
||||||
if train_quantizer_reconstruction_until == -1:
|
if train_quantizer_reconstruction_until == -1:
|
||||||
|
@ -327,11 +328,11 @@ def register_transformer_diffusion8_with_ar_prior(opt_net, opt):
|
||||||
|
|
||||||
|
|
||||||
def test_quant_model():
|
def test_quant_model():
|
||||||
clip = torch.randn(2, 256, 400)
|
clip = torch.randn(2, 100, 401)
|
||||||
ts = torch.LongTensor([600, 600])
|
ts = torch.LongTensor([600, 600])
|
||||||
model = TransformerDiffusionWithQuantizer(model_channels=2048, block_channels=1024, prenet_channels=1024,
|
model = TransformerDiffusionWithQuantizer(in_channels=100, model_channels=2048, block_channels=1024, prenet_channels=1024,
|
||||||
input_vec_dim=1024, num_layers=16, prenet_layers=6,
|
input_vec_dim=1024, num_layers=16, prenet_layers=6, quantizer_dims=[1024,896,768,512],
|
||||||
train_quantizer_reconstruction_until=1000)
|
train_quantizer_reconstruction_until=-1)
|
||||||
model.get_grad_norm_parameter_groups()
|
model.get_grad_norm_parameter_groups()
|
||||||
|
|
||||||
print_network(model)
|
print_network(model)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user