forked from mrq/DL-Art-School
UnifiedGptVoice!
This commit is contained in:
parent
5bc9772cb0
commit
8b19c37409
|
@ -99,7 +99,7 @@ class GrandConjoinedDataset(torch.utils.data.Dataset):
|
|||
'paired_text_tokens': snt['padded_text'],
|
||||
'paired_file': snt['filenames'],
|
||||
'speech_audio': snt['wav'],
|
||||
'speech_lengths': snt['wav_lengths'],
|
||||
'speech_audio_lengths': snt['wav_lengths'],
|
||||
'speech_file': snt['filenames'],
|
||||
'text_text': snt['real_text'],
|
||||
'text_tokens': snt['padded_text'],
|
||||
|
@ -114,7 +114,7 @@ class GrandConjoinedDataset(torch.utils.data.Dataset):
|
|||
'paired_text_tokens': snt['padded_text'],
|
||||
'paired_file': snt['filenames'],
|
||||
'speech_audio': sp['clip'],
|
||||
'speech_lengths': clamp(sp['clip_lengths'], 0, self.max_solo_audio_length),
|
||||
'speech_audio_lengths': clamp(sp['clip_lengths'], 0, self.max_solo_audio_length),
|
||||
'speech_file': sp['path'],
|
||||
'text_text': txt,
|
||||
'text_tokens': txt_tok,
|
||||
|
|
|
@ -38,7 +38,15 @@ class ConditioningEncoder(nn.Module):
|
|||
return h[:, :, 0]
|
||||
|
||||
|
||||
class GptTtsHf(nn.Module):
|
||||
class UnifiedGptVoice(nn.Module):
|
||||
"""
|
||||
Derived from GptTtsHf, but offers multiple modes of operation:
|
||||
- Text only
|
||||
- Voice only
|
||||
- Text conditioned on voice
|
||||
- Voice conditioned on text
|
||||
"""
|
||||
|
||||
NUMBER_TEXT_TOKENS = 10000 # The number of tokens produced by our bespoke BPE tokenizer.
|
||||
START_TEXT_TOKEN = 9999
|
||||
STOP_TEXT_TOKEN = 0
|
||||
|
@ -79,87 +87,120 @@ class GptTtsHf(nn.Module):
|
|||
tar = F.pad(input, (0,1), value=stop_token)
|
||||
return inp, tar
|
||||
|
||||
def get_logits(self, text_inputs, cond_input, mel_inputs, get_attns=False):
|
||||
text_emb = self.text_embedding(text_inputs)
|
||||
cond = self.conditioning_encoder(cond_input).unsqueeze(1)
|
||||
mel_emb = self.gpt.get_input_embeddings()(mel_inputs)
|
||||
|
||||
emb = torch.cat([text_emb, cond, mel_emb], dim=1)
|
||||
gpt_out = self.gpt(inputs_embeds=emb, return_dict=True, output_attentions=get_attns)
|
||||
if get_attns:
|
||||
return gpt_out.attentions
|
||||
enc = gpt_out.last_hidden_state
|
||||
|
||||
text_logits = self.final_norm(enc[:, :text_emb.shape[1]])
|
||||
text_logits = self.text_head(text_logits)
|
||||
text_logits = text_logits.permute(0,2,1)
|
||||
mel_logits = self.final_norm(enc[:, -mel_emb.shape[1]:])
|
||||
mel_logits = self.mel_head(mel_logits)
|
||||
mel_logits = mel_logits.permute(0,2,1)
|
||||
|
||||
return text_logits, mel_logits
|
||||
|
||||
def forward(self, text_inputs, cond_input, mel_targets, wav_lengths, return_attentions=False):
|
||||
def set_mel_padding(self, mel_input_tokens, wav_lengths):
|
||||
"""
|
||||
Forward pass
|
||||
text_inputs: long tensor, (b,t)
|
||||
cond_inputs: MEL float tensor, (b,c,80,s)
|
||||
mel_targets: long tensor, (b,m)
|
||||
mel_lengths: long tensor, (b,)
|
||||
Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in
|
||||
that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required
|
||||
preformatting to create a working TTS model.
|
||||
"""
|
||||
# Set padding areas within MEL (currently it is coded with the MEL code for <zero>).
|
||||
mel_lengths = wav_lengths // self.mel_length_compression
|
||||
for b in range(len(mel_lengths)):
|
||||
if mel_lengths[b] < mel_targets.shape[-1]:
|
||||
mel_targets[b, mel_lengths[b]:] = self.STOP_MEL_TOKEN
|
||||
actual_end = mel_lengths[b] + 1 # Due to the convolutional nature of how these tokens are generated, it would be best if the model predicts a token past the actual last token.
|
||||
if actual_end < mel_input_tokens.shape[-1]:
|
||||
mel_input_tokens[b, actual_end:] = self.STOP_MEL_TOKEN
|
||||
return mel_input_tokens
|
||||
|
||||
# Randomly permute the conditioning spectrogram, to destroy any structure present.
|
||||
cond_input = cond_input[:,:,torch.randperm(cond_input.shape[-1])]
|
||||
def randomly_permute_conditioning_input(self, speech_conditioning_input):
|
||||
"""
|
||||
Randomly permute the conditioning spectrogram, to destroy any structure present. Note that since the
|
||||
conditioning input is derived from a discrete spectrogram, it does actually retain structure, but only a little
|
||||
bit (actually: exactly how much we want; enough to discriminate different vocal qualities, but nothing about
|
||||
what is being said).
|
||||
"""
|
||||
cond_input = speech_conditioning_input[:,:,torch.randperm(speech_conditioning_input.shape[-1])]
|
||||
if cond_input.shape[-1] > self.max_conditioning_length:
|
||||
cond_input = cond_input[:,:,:self.max_conditioning_length]
|
||||
return cond_input
|
||||
|
||||
def get_logits(self, speech_conditioning_input, first_inputs, first_head, second_inputs=None, second_head=None, get_attns=False):
|
||||
if second_inputs is not None:
|
||||
emb = torch.cat([speech_conditioning_input, first_inputs, second_inputs], dim=1)
|
||||
else:
|
||||
emb = torch.cat([speech_conditioning_input, first_inputs], dim=1)
|
||||
|
||||
gpt_out = self.gpt(inputs_embeds=emb, return_dict=True, output_attentions=get_attns)
|
||||
if get_attns:
|
||||
return gpt_out.attentions
|
||||
|
||||
enc = gpt_out.last_hidden_state[:, 1:] # The first logit is tied to the speech_conditioning_input
|
||||
first_logits = self.final_norm(enc[:, :first_inputs.shape[1]])
|
||||
first_logits = first_head(first_logits)
|
||||
first_logits = first_logits.permute(0,2,1)
|
||||
if second_inputs is not None:
|
||||
second_logits = self.final_norm(enc[:, -second_inputs.shape[1]:])
|
||||
second_logits = second_head(second_logits)
|
||||
second_logits = second_logits.permute(0,2,1)
|
||||
return first_logits, second_logits
|
||||
else:
|
||||
return first_logits
|
||||
|
||||
def forward(self, speech_conditioning_input, text_inputs, mel_inputs, wav_lengths, text_first=True, return_attentions=False):
|
||||
"""
|
||||
Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode
|
||||
(actuated by `text_first`).
|
||||
|
||||
speech_conditioning_input: MEL float tensor, (b,80,s)
|
||||
text_inputs: long tensor, (b,t)
|
||||
mel_inputs: long tensor, (b,m)
|
||||
wav_lengths: long tensor, (b,)
|
||||
"""
|
||||
mel_inputs = self.set_mel_padding(mel_inputs, wav_lengths)
|
||||
speech_conditioning_input = self.randomly_permute_conditioning_input(speech_conditioning_input)
|
||||
speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input).unsqueeze(1)
|
||||
|
||||
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.START_TEXT_TOKEN, self.STOP_TEXT_TOKEN)
|
||||
mel_inputs, mel_targets = self.build_aligned_inputs_and_targets(mel_targets, self.START_MEL_TOKEN, self.STOP_MEL_TOKEN)
|
||||
text_logits, mel_logits = self.get_logits(text_inputs, cond_input, mel_inputs, get_attns=return_attentions)
|
||||
text_emb = self.text_embedding(text_inputs)
|
||||
mel_inputs, mel_targets = self.build_aligned_inputs_and_targets(mel_inputs, self.START_MEL_TOKEN, self.STOP_MEL_TOKEN)
|
||||
mel_emb = self.gpt.get_input_embeddings()(mel_inputs)
|
||||
if text_first:
|
||||
text_logits, mel_logits = self.get_logits(speech_conditioning_input, text_emb, self.text_head, mel_emb, self.mel_head, get_attns=return_attentions)
|
||||
else:
|
||||
mel_logits, text_logits = self.get_logits(speech_conditioning_input, mel_emb, self.mel_head, text_emb, self.text_head, get_attns=return_attentions)
|
||||
|
||||
if return_attentions:
|
||||
return mel_logits
|
||||
loss_text = F.cross_entropy(text_logits, text_targets.long())
|
||||
loss_mel = F.cross_entropy(mel_logits, mel_targets.long())
|
||||
return loss_text.mean(), loss_mel.mean(), mel_logits
|
||||
|
||||
def inference(self, text_inputs, cond_input, **hf_generate_kwargs):
|
||||
if not hasattr(self, 'inference_model'):
|
||||
self.inference_model = GPT2InferenceModel(self.gpt_config, self.gpt, None, self.final_norm, self.mel_head)
|
||||
def text_forward(self, speech_conditioning_input, text_inputs):
|
||||
"""
|
||||
Performs autoregressive modeling on only text. Still requires a speech_conditioning_input due to the way the
|
||||
model inputs are formatted. Just provide any audio clip (arguably, zeros could be provided).
|
||||
"""
|
||||
speech_conditioning_input = self.randomly_permute_conditioning_input(speech_conditioning_input)
|
||||
speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input).unsqueeze(1)
|
||||
|
||||
text_inputs = F.pad(text_inputs, (0, self.max_symbols_per_phrase - text_inputs.shape[1]), value=self.STOP_TEXT_TOKEN)
|
||||
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.START_TEXT_TOKEN, self.STOP_TEXT_TOKEN)
|
||||
text_emb = self.text_embedding(text_inputs)
|
||||
text_logits = self.get_logits(speech_conditioning_input, text_emb, self.text_head)
|
||||
loss_text = F.cross_entropy(text_logits, text_targets.long())
|
||||
return loss_text.mean()
|
||||
|
||||
# Randomly permute the conditioning spectrogram, to destroy any structure present.
|
||||
cond_input = cond_input[:,:,torch.randperm(cond_input.shape[-1])]
|
||||
if cond_input.shape[-1] > self.max_conditioning_length:
|
||||
cond_input = cond_input[:,:,:self.max_conditioning_length]
|
||||
cond = self.conditioning_encoder(cond_input).unsqueeze(1)
|
||||
def speech_forward(self, speech_conditioning_input, mel_inputs, wav_lengths):
|
||||
"""
|
||||
Performs autoregressive modeling on only speech data.
|
||||
"""
|
||||
mel_inputs = self.set_mel_padding(mel_inputs, wav_lengths)
|
||||
speech_conditioning_input = self.randomly_permute_conditioning_input(speech_conditioning_input)
|
||||
speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input).unsqueeze(1)
|
||||
|
||||
emb = torch.cat([text_emb, cond], dim=1)
|
||||
self.inference_model.store_mel_emb(emb)
|
||||
|
||||
fake_inputs = torch.full((emb.shape[0],emb.shape[1]+1,), fill_value=1, dtype=torch.long, device=text_inputs.device)
|
||||
fake_inputs[:,-1] = self.START_MEL_TOKEN
|
||||
|
||||
gen = self.inference_model.generate(fake_inputs, bos_token_id=self.START_MEL_TOKEN, pad_token_id=self.STOP_MEL_TOKEN, eos_token_id=self.STOP_MEL_TOKEN,
|
||||
max_length=emb.shape[1]+self.max_mel_tokens, **hf_generate_kwargs)
|
||||
return gen[:, fake_inputs.shape[1]:]
|
||||
mel_inputs, mel_targets = self.build_aligned_inputs_and_targets(mel_inputs, self.START_MEL_TOKEN, self.STOP_MEL_TOKEN)
|
||||
mel_emb = self.gpt.get_input_embeddings()(mel_inputs)
|
||||
mel_logits = self.get_logits(speech_conditioning_input, mel_emb, self.mel_head)
|
||||
loss_mel = F.cross_entropy(mel_logits, mel_targets.long())
|
||||
return loss_mel.mean()
|
||||
|
||||
|
||||
@register_model
|
||||
def register_gpt_tts_hf(opt_net, opt):
|
||||
return GptTtsHf(**opt_get(opt_net, ['kwargs'], {}))
|
||||
def register_unified_gpt_voice(opt_net, opt):
|
||||
return UnifiedGptVoice(**opt_get(opt_net, ['kwargs'], {}))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
gpt = GptTtsHf(model_dim=1024, heads=16)
|
||||
l = gpt(torch.randint(high=len(symbols), size=(2,200)),
|
||||
torch.arange(0, 80, 1, dtype=torch.float).view(1,80,1).repeat(2,1,800),
|
||||
gpt = UnifiedGptVoice(model_dim=256, heads=4)
|
||||
l = gpt(torch.randn(2, 80, 800),
|
||||
torch.randint(high=len(symbols), size=(2,80)),
|
||||
torch.randint(high=8192, size=(2,250)),
|
||||
torch.tensor([150*256,195*256]))
|
||||
|
|
|
@ -286,7 +286,7 @@ class Trainer:
|
|||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_gpt_tts.yml')
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_gpt_unified_voice.yml')
|
||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
||||
parser.add_argument('--local_rank', type=int, default=0)
|
||||
args = parser.parse_args()
|
||||
|
|
Loading…
Reference in New Issue
Block a user