forked from mrq/DL-Art-School
Make RRDB usable in the current iteration
This commit is contained in:
parent
b95c4087d1
commit
9cde58be80
|
@ -156,8 +156,12 @@ class FixupResNet(nn.Module):
|
|||
return nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
# This class expects a medium skip (half-res) and low skip (quarter-res) provided as a tuple in the input.
|
||||
x, med_skip, lo_skip = x
|
||||
if len(x) == 3:
|
||||
# This class can take a medium skip (half-res) and low skip (quarter-res) provided as a tuple in the input.
|
||||
x, med_skip, lo_skip = x
|
||||
else:
|
||||
# Or just a tuple with only the high res input (this assumes number_skips was set right).
|
||||
x = x[0]
|
||||
|
||||
x = self.layer0(x)
|
||||
if self.number_skips > 0:
|
||||
|
|
|
@ -46,10 +46,11 @@ class RRDB(nn.Module):
|
|||
|
||||
|
||||
class RRDBNet(nn.Module):
|
||||
def __init__(self, in_nc, out_nc, nf, nb, gc=32, interpolation_scale_factor=2):
|
||||
def __init__(self, in_nc, out_nc, nf, nb, gc=32, scale=2):
|
||||
super(RRDBNet, self).__init__()
|
||||
RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc)
|
||||
|
||||
self.scale = scale
|
||||
self.conv_first = nn.Conv2d(in_nc, nf, 7, 1, padding=3, bias=True)
|
||||
self.RRDB_trunk = arch_util.make_layer(RRDB_block_f, nb)
|
||||
self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
||||
|
@ -61,15 +62,17 @@ class RRDBNet(nn.Module):
|
|||
|
||||
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
||||
|
||||
self.interpolation_scale_factor = interpolation_scale_factor
|
||||
|
||||
def forward(self, x):
|
||||
fea = self.conv_first(x)
|
||||
trunk = self.trunk_conv(self.RRDB_trunk(fea))
|
||||
fea = fea + trunk
|
||||
|
||||
fea = self.lrelu(self.upconv1(F.interpolate(fea, scale_factor=self.interpolation_scale_factor, mode='nearest')))
|
||||
fea = self.lrelu(self.upconv2(F.interpolate(fea, scale_factor=self.interpolation_scale_factor, mode='nearest')))
|
||||
if self.scale >= 2:
|
||||
fea = F.interpolate(fea, scale_factor=2, mode='nearest')
|
||||
fea = self.lrelu(self.upconv1(fea))
|
||||
if self.scale >= 4:
|
||||
fea = F.interpolate(fea, scale_factor=2, mode='nearest')
|
||||
fea = self.lrelu(self.upconv2(fea))
|
||||
out = self.conv_last(self.lrelu(self.HRconv(fea)))
|
||||
|
||||
return out
|
||||
return (out,)
|
||||
|
|
|
@ -25,9 +25,8 @@ def define_G(opt, net_key='network_G'):
|
|||
nf=opt_net['nf'], nb=opt_net['nb'], upscale=opt_net['scale'])
|
||||
elif which_model == 'RRDBNet':
|
||||
# RRDB does scaling in two steps, so take the sqrt of the scale we actually want to achieve and feed it to RRDB.
|
||||
scale_per_step = math.sqrt(scale)
|
||||
netG = RRDBNet_arch.RRDBNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'],
|
||||
nf=opt_net['nf'], nb=opt_net['nb'], interpolation_scale_factor=scale_per_step)
|
||||
nf=opt_net['nf'], nb=opt_net['nb'], scale=scale)
|
||||
elif which_model == 'RRDBNetXL':
|
||||
scale_per_step = math.sqrt(scale)
|
||||
netG = RRDBNetXL_arch.RRDBNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'],
|
||||
|
|
|
@ -30,7 +30,7 @@ def init_dist(backend='nccl', **kwargs):
|
|||
def main():
|
||||
#### options
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_vix_resgenv2.yml')
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_vix_rrdb_v2.yml')
|
||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none',
|
||||
help='job launcher')
|
||||
parser.add_argument('--local_rank', type=int, default=0)
|
||||
|
@ -147,7 +147,7 @@ def main():
|
|||
current_step = resume_state['iter']
|
||||
model.resume_training(resume_state) # handle optimizers and schedulers
|
||||
else:
|
||||
current_step = 0
|
||||
current_step = -1
|
||||
start_epoch = 0
|
||||
|
||||
#### training
|
||||
|
|
Loading…
Reference in New Issue
Block a user