forked from mrq/DL-Art-School
Add lucidrains pixpro trainer
This commit is contained in:
parent
39a94c74b5
commit
9fed90393f
|
@ -0,0 +1,487 @@
|
|||
import math
|
||||
import copy
|
||||
import os
|
||||
import random
|
||||
from functools import wraps, partial
|
||||
from math import floor
|
||||
|
||||
import torch
|
||||
import torchvision
|
||||
from torch import nn, einsum
|
||||
import torch.nn.functional as F
|
||||
|
||||
from kornia import augmentation as augs
|
||||
from kornia import filters, color
|
||||
|
||||
from einops import rearrange
|
||||
|
||||
# helper functions
|
||||
from trainer.networks import register_model, create_model
|
||||
|
||||
|
||||
def identity(t):
|
||||
return t
|
||||
|
||||
def default(val, def_val):
|
||||
return def_val if val is None else val
|
||||
|
||||
def rand_true(prob):
|
||||
return random.random() < prob
|
||||
|
||||
def singleton(cache_key):
|
||||
def inner_fn(fn):
|
||||
@wraps(fn)
|
||||
def wrapper(self, *args, **kwargs):
|
||||
instance = getattr(self, cache_key)
|
||||
if instance is not None:
|
||||
return instance
|
||||
|
||||
instance = fn(self, *args, **kwargs)
|
||||
setattr(self, cache_key, instance)
|
||||
return instance
|
||||
return wrapper
|
||||
return inner_fn
|
||||
|
||||
def get_module_device(module):
|
||||
return next(module.parameters()).device
|
||||
|
||||
def set_requires_grad(model, val):
|
||||
for p in model.parameters():
|
||||
p.requires_grad = val
|
||||
|
||||
def cutout_coordinates(image, ratio_range = (0.6, 0.8)):
|
||||
_, _, orig_h, orig_w = image.shape
|
||||
|
||||
ratio_lo, ratio_hi = ratio_range
|
||||
random_ratio = ratio_lo + random.random() * (ratio_hi - ratio_lo)
|
||||
w, h = floor(random_ratio * orig_w), floor(random_ratio * orig_h)
|
||||
coor_x = floor((orig_w - w) * random.random())
|
||||
coor_y = floor((orig_h - h) * random.random())
|
||||
return ((coor_y, coor_y + h), (coor_x, coor_x + w)), random_ratio
|
||||
|
||||
def cutout_and_resize(image, coordinates, output_size = None, mode = 'nearest'):
|
||||
shape = image.shape
|
||||
output_size = default(output_size, shape[2:])
|
||||
(y0, y1), (x0, x1) = coordinates
|
||||
cutout_image = image[:, :, y0:y1, x0:x1]
|
||||
return F.interpolate(cutout_image, size = output_size, mode = mode)
|
||||
|
||||
# augmentation utils
|
||||
|
||||
class RandomApply(nn.Module):
|
||||
def __init__(self, fn, p):
|
||||
super().__init__()
|
||||
self.fn = fn
|
||||
self.p = p
|
||||
def forward(self, x):
|
||||
if random.random() > self.p:
|
||||
return x
|
||||
return self.fn(x)
|
||||
|
||||
# exponential moving average
|
||||
|
||||
class EMA():
|
||||
def __init__(self, beta):
|
||||
super().__init__()
|
||||
self.beta = beta
|
||||
|
||||
def update_average(self, old, new):
|
||||
if old is None:
|
||||
return new
|
||||
return old * self.beta + (1 - self.beta) * new
|
||||
|
||||
def update_moving_average(ema_updater, ma_model, current_model):
|
||||
for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()):
|
||||
old_weight, up_weight = ma_params.data, current_params.data
|
||||
ma_params.data = ema_updater.update_average(old_weight, up_weight)
|
||||
|
||||
# loss fn
|
||||
|
||||
def loss_fn(x, y):
|
||||
x = F.normalize(x, dim=-1, p=2)
|
||||
y = F.normalize(y, dim=-1, p=2)
|
||||
return 2 - 2 * (x * y).sum(dim=-1)
|
||||
|
||||
# classes
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, chan, chan_out = 256, inner_dim = 2048):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Linear(chan, inner_dim),
|
||||
nn.BatchNorm1d(inner_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(inner_dim, chan_out)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
class ConvMLP(nn.Module):
|
||||
def __init__(self, chan, chan_out = 256, inner_dim = 2048):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Conv2d(chan, inner_dim, 1),
|
||||
nn.BatchNorm2d(inner_dim),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(inner_dim, chan_out, 1)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
class PPM(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
chan,
|
||||
num_layers = 1,
|
||||
gamma = 2):
|
||||
super().__init__()
|
||||
self.gamma = gamma
|
||||
|
||||
if num_layers == 0:
|
||||
self.transform_net = nn.Identity()
|
||||
elif num_layers == 1:
|
||||
self.transform_net = nn.Conv2d(chan, chan, 1)
|
||||
elif num_layers == 2:
|
||||
self.transform_net = nn.Sequential(
|
||||
nn.Conv2d(chan, chan, 1),
|
||||
nn.BatchNorm2d(chan),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(chan, chan, 1)
|
||||
)
|
||||
else:
|
||||
raise ValueError('num_layers must be one of 0, 1, or 2')
|
||||
|
||||
def forward(self, x):
|
||||
xi = x[:, :, :, :, None, None]
|
||||
xj = x[:, :, None, None, :, :]
|
||||
similarity = F.relu(F.cosine_similarity(xi, xj, dim = 1)) ** self.gamma
|
||||
|
||||
transform_out = self.transform_net(x)
|
||||
out = einsum('b x y h w, b c h w -> b c x y', similarity, transform_out)
|
||||
return out
|
||||
|
||||
# a wrapper class for the base neural network
|
||||
# will manage the interception of the hidden layer output
|
||||
# and pipe it into the projecter and predictor nets
|
||||
|
||||
class NetWrapper(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
net,
|
||||
projection_size,
|
||||
projection_hidden_size,
|
||||
layer_pixel = -2,
|
||||
layer_instance = -2
|
||||
):
|
||||
super().__init__()
|
||||
self.net = net
|
||||
self.layer_pixel = layer_pixel
|
||||
self.layer_instance = layer_instance
|
||||
|
||||
self.pixel_projector = None
|
||||
self.instance_projector = None
|
||||
|
||||
self.projection_size = projection_size
|
||||
self.projection_hidden_size = projection_hidden_size
|
||||
|
||||
self.hidden_pixel = None
|
||||
self.hidden_instance = None
|
||||
self.hook_registered = False
|
||||
|
||||
def _find_layer(self, layer_id):
|
||||
if type(layer_id) == str:
|
||||
modules = dict([*self.net.named_modules()])
|
||||
return modules.get(layer_id, None)
|
||||
elif type(layer_id) == int:
|
||||
children = [*self.net.children()]
|
||||
return children[layer_id]
|
||||
return None
|
||||
|
||||
def _hook(self, attr_name, _, __, output):
|
||||
setattr(self, attr_name, output)
|
||||
|
||||
def _register_hook(self):
|
||||
pixel_layer = self._find_layer(self.layer_pixel)
|
||||
instance_layer = self._find_layer(self.layer_instance)
|
||||
|
||||
assert pixel_layer is not None, f'hidden layer ({self.layer_pixel}) not found'
|
||||
assert instance_layer is not None, f'hidden layer ({self.layer_instance}) not found'
|
||||
|
||||
pixel_layer.register_forward_hook(partial(self._hook, 'hidden_pixel'))
|
||||
instance_layer.register_forward_hook(partial(self._hook, 'hidden_instance'))
|
||||
self.hook_registered = True
|
||||
|
||||
@singleton('pixel_projector')
|
||||
def _get_pixel_projector(self, hidden):
|
||||
_, dim, *_ = hidden.shape
|
||||
projector = ConvMLP(dim, self.projection_size, self.projection_hidden_size)
|
||||
return projector.to(hidden)
|
||||
|
||||
@singleton('instance_projector')
|
||||
def _get_instance_projector(self, hidden):
|
||||
_, dim = hidden.shape
|
||||
projector = MLP(dim, self.projection_size, self.projection_hidden_size)
|
||||
return projector.to(hidden)
|
||||
|
||||
def get_representation(self, x):
|
||||
if not self.hook_registered:
|
||||
self._register_hook()
|
||||
|
||||
_ = self.net(x)
|
||||
hidden_pixel = self.hidden_pixel
|
||||
hidden_instance = self.hidden_instance
|
||||
self.hidden_pixel = None
|
||||
self.hidden_instance = None
|
||||
assert hidden_pixel is not None, f'hidden pixel layer {self.layer_pixel} never emitted an output'
|
||||
assert hidden_instance is not None, f'hidden instance layer {self.layer_instance} never emitted an output'
|
||||
return hidden_pixel, hidden_instance
|
||||
|
||||
def forward(self, x):
|
||||
pixel_representation, instance_representation = self.get_representation(x)
|
||||
instance_representation = instance_representation.flatten(1)
|
||||
|
||||
pixel_projector = self._get_pixel_projector(pixel_representation)
|
||||
instance_projector = self._get_instance_projector(instance_representation)
|
||||
|
||||
pixel_projection = pixel_projector(pixel_representation)
|
||||
instance_projection = instance_projector(instance_representation)
|
||||
return pixel_projection, instance_projection
|
||||
|
||||
# main class
|
||||
|
||||
class PixelCL(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
net,
|
||||
image_size,
|
||||
hidden_layer_pixel = -2,
|
||||
hidden_layer_instance = -2,
|
||||
projection_size = 256,
|
||||
projection_hidden_size = 2048,
|
||||
augment_fn = None,
|
||||
augment_fn2 = None,
|
||||
prob_rand_hflip = 0.25,
|
||||
moving_average_decay = 0.99,
|
||||
ppm_num_layers = 1,
|
||||
ppm_gamma = 2,
|
||||
distance_thres = 0.7,
|
||||
similarity_temperature = 0.3,
|
||||
alpha = 1.,
|
||||
use_pixpro = True,
|
||||
cutout_ratio_range = (0.6, 0.8),
|
||||
cutout_interpolate_mode = 'nearest',
|
||||
coord_cutout_interpolate_mode = 'bilinear'
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
DEFAULT_AUG = nn.Sequential(
|
||||
RandomApply(augs.ColorJitter(0.3, 0.3, 0.3, 0.2), p=0.8),
|
||||
augs.RandomGrayscale(p=0.2),
|
||||
RandomApply(filters.GaussianBlur2d((3, 3), (1.5, 1.5)), p=0.1)
|
||||
)
|
||||
|
||||
self.augment1 = default(augment_fn, DEFAULT_AUG)
|
||||
self.augment2 = default(augment_fn2, self.augment1)
|
||||
self.prob_rand_hflip = prob_rand_hflip
|
||||
|
||||
self.online_encoder = NetWrapper(
|
||||
net = net,
|
||||
projection_size = projection_size,
|
||||
projection_hidden_size = projection_hidden_size,
|
||||
layer_pixel = hidden_layer_pixel,
|
||||
layer_instance = hidden_layer_instance
|
||||
)
|
||||
|
||||
self.target_encoder = None
|
||||
self.target_ema_updater = EMA(moving_average_decay)
|
||||
|
||||
self.distance_thres = distance_thres
|
||||
self.similarity_temperature = similarity_temperature
|
||||
self.alpha = alpha
|
||||
|
||||
self.use_pixpro = use_pixpro
|
||||
|
||||
if use_pixpro:
|
||||
self.propagate_pixels = PPM(
|
||||
chan = projection_size,
|
||||
num_layers = ppm_num_layers,
|
||||
gamma = ppm_gamma
|
||||
)
|
||||
|
||||
self.cutout_ratio_range = cutout_ratio_range
|
||||
self.cutout_interpolate_mode = cutout_interpolate_mode
|
||||
self.coord_cutout_interpolate_mode = coord_cutout_interpolate_mode
|
||||
|
||||
# instance level predictor
|
||||
self.online_predictor = MLP(projection_size, projection_size, projection_hidden_size)
|
||||
|
||||
# get device of network and make wrapper same device
|
||||
device = get_module_device(net)
|
||||
self.to(device)
|
||||
|
||||
# send a mock image tensor to instantiate singleton parameters
|
||||
self.forward(torch.randn(2, 3, image_size, image_size, device=device))
|
||||
|
||||
@singleton('target_encoder')
|
||||
def _get_target_encoder(self):
|
||||
target_encoder = copy.deepcopy(self.online_encoder)
|
||||
set_requires_grad(target_encoder, False)
|
||||
return target_encoder
|
||||
|
||||
def reset_moving_average(self):
|
||||
del self.target_encoder
|
||||
self.target_encoder = None
|
||||
|
||||
def update_moving_average(self):
|
||||
assert self.target_encoder is not None, 'target encoder has not been created yet'
|
||||
update_moving_average(self.target_ema_updater, self.target_encoder, self.online_encoder)
|
||||
|
||||
def forward(self, x):
|
||||
shape, device, prob_flip = x.shape, x.device, self.prob_rand_hflip
|
||||
|
||||
rand_flip_fn = lambda t: torch.flip(t, dims = (-1,))
|
||||
|
||||
flip_image_one, flip_image_two = rand_true(prob_flip), rand_true(prob_flip)
|
||||
flip_image_one_fn = rand_flip_fn if flip_image_one else identity
|
||||
flip_image_two_fn = rand_flip_fn if flip_image_two else identity
|
||||
|
||||
cutout_coordinates_one, _ = cutout_coordinates(x, self.cutout_ratio_range)
|
||||
cutout_coordinates_two, _ = cutout_coordinates(x, self.cutout_ratio_range)
|
||||
|
||||
image_one_cutout = cutout_and_resize(x, cutout_coordinates_one, mode = self.cutout_interpolate_mode)
|
||||
image_two_cutout = cutout_and_resize(x, cutout_coordinates_two, mode = self.cutout_interpolate_mode)
|
||||
|
||||
image_one_cutout = flip_image_one_fn(image_one_cutout)
|
||||
image_two_cutout = flip_image_two_fn(image_two_cutout)
|
||||
|
||||
image_one_cutout, image_two_cutout = self.augment1(image_one_cutout), self.augment2(image_two_cutout)
|
||||
|
||||
self.aug1 = image_one_cutout.detach().clone()
|
||||
self.aug2 = image_two_cutout.detach().clone()
|
||||
|
||||
proj_pixel_one, proj_instance_one = self.online_encoder(image_one_cutout)
|
||||
proj_pixel_two, proj_instance_two = self.online_encoder(image_two_cutout)
|
||||
|
||||
image_h, image_w = shape[2:]
|
||||
|
||||
proj_image_shape = proj_pixel_one.shape[2:]
|
||||
proj_image_h, proj_image_w = proj_image_shape
|
||||
|
||||
coordinates = torch.meshgrid(
|
||||
torch.arange(image_h, device = device),
|
||||
torch.arange(image_w, device = device)
|
||||
)
|
||||
|
||||
coordinates = torch.stack(coordinates).unsqueeze(0).float()
|
||||
coordinates /= math.sqrt(image_h ** 2 + image_w ** 2)
|
||||
coordinates[:, 0] *= proj_image_h
|
||||
coordinates[:, 1] *= proj_image_w
|
||||
|
||||
proj_coors_one = cutout_and_resize(coordinates, cutout_coordinates_one, output_size = proj_image_shape, mode = self.coord_cutout_interpolate_mode)
|
||||
proj_coors_two = cutout_and_resize(coordinates, cutout_coordinates_two, output_size = proj_image_shape, mode = self.coord_cutout_interpolate_mode)
|
||||
|
||||
proj_coors_one = flip_image_one_fn(proj_coors_one)
|
||||
proj_coors_two = flip_image_two_fn(proj_coors_two)
|
||||
|
||||
proj_coors_one, proj_coors_two = map(lambda t: rearrange(t, 'b c h w -> (b h w) c'), (proj_coors_one, proj_coors_two))
|
||||
pdist = nn.PairwiseDistance(p = 2)
|
||||
|
||||
num_pixels = proj_coors_one.shape[0]
|
||||
|
||||
proj_coors_one_expanded = proj_coors_one[:, None].expand(num_pixels, num_pixels, -1).reshape(num_pixels * num_pixels, 2)
|
||||
proj_coors_two_expanded = proj_coors_two[None, :].expand(num_pixels, num_pixels, -1).reshape(num_pixels * num_pixels, 2)
|
||||
|
||||
distance_matrix = pdist(proj_coors_one_expanded, proj_coors_two_expanded)
|
||||
distance_matrix = distance_matrix.reshape(num_pixels, num_pixels)
|
||||
|
||||
positive_mask_one_two = distance_matrix < self.distance_thres
|
||||
positive_mask_two_one = positive_mask_one_two.t()
|
||||
|
||||
with torch.no_grad():
|
||||
target_encoder = self._get_target_encoder()
|
||||
target_proj_pixel_one, target_proj_instance_one = target_encoder(image_one_cutout)
|
||||
target_proj_pixel_two, target_proj_instance_two = target_encoder(image_two_cutout)
|
||||
|
||||
# flatten all the pixel projections
|
||||
|
||||
flatten = lambda t: rearrange(t, 'b c h w -> b c (h w)')
|
||||
|
||||
target_proj_pixel_one, target_proj_pixel_two = list(map(flatten, (target_proj_pixel_one, target_proj_pixel_two)))
|
||||
|
||||
# get total number of positive pixel pairs
|
||||
|
||||
positive_pixel_pairs = positive_mask_one_two.sum()
|
||||
|
||||
# get instance level loss
|
||||
|
||||
pred_instance_one = self.online_predictor(proj_instance_one)
|
||||
pred_instance_two = self.online_predictor(proj_instance_two)
|
||||
|
||||
loss_instance_one = loss_fn(pred_instance_one, target_proj_instance_two.detach())
|
||||
loss_instance_two = loss_fn(pred_instance_two, target_proj_instance_one.detach())
|
||||
|
||||
instance_loss = (loss_instance_one + loss_instance_two).mean()
|
||||
|
||||
if positive_pixel_pairs == 0:
|
||||
return instance_loss, 0
|
||||
|
||||
if not self.use_pixpro:
|
||||
# calculate pix contrast loss
|
||||
|
||||
proj_pixel_one, proj_pixel_two = list(map(flatten, (proj_pixel_one, proj_pixel_two)))
|
||||
|
||||
similarity_one_two = F.cosine_similarity(proj_pixel_one[..., :, None], target_proj_pixel_two[..., None, :], dim = 1) / self.similarity_temperature
|
||||
similarity_two_one = F.cosine_similarity(proj_pixel_two[..., :, None], target_proj_pixel_one[..., None, :], dim = 1) / self.similarity_temperature
|
||||
|
||||
loss_pix_one_two = -torch.log(
|
||||
similarity_one_two.masked_select(positive_mask_one_two[None, ...]).exp().sum() /
|
||||
similarity_one_two.exp().sum()
|
||||
)
|
||||
|
||||
loss_pix_two_one = -torch.log(
|
||||
similarity_two_one.masked_select(positive_mask_two_one[None, ...]).exp().sum() /
|
||||
similarity_two_one.exp().sum()
|
||||
)
|
||||
|
||||
pix_loss = (loss_pix_one_two + loss_pix_two_one) / 2
|
||||
else:
|
||||
# calculate pix pro loss
|
||||
|
||||
propagated_pixels_one = self.propagate_pixels(proj_pixel_one)
|
||||
propagated_pixels_two = self.propagate_pixels(proj_pixel_two)
|
||||
|
||||
propagated_pixels_one, propagated_pixels_two = list(map(flatten, (propagated_pixels_one, propagated_pixels_two)))
|
||||
|
||||
propagated_similarity_one_two = F.cosine_similarity(propagated_pixels_one[..., :, None], target_proj_pixel_two[..., None, :], dim = 1)
|
||||
propagated_similarity_two_one = F.cosine_similarity(propagated_pixels_two[..., :, None], target_proj_pixel_one[..., None, :], dim = 1)
|
||||
|
||||
loss_pixpro_one_two = - propagated_similarity_one_two.masked_select(positive_mask_one_two[None, ...]).mean()
|
||||
loss_pixpro_two_one = - propagated_similarity_two_one.masked_select(positive_mask_two_one[None, ...]).mean()
|
||||
|
||||
pix_loss = (loss_pixpro_one_two + loss_pixpro_two_one) / 2
|
||||
|
||||
# total loss
|
||||
|
||||
loss = pix_loss * self.alpha + instance_loss
|
||||
return loss, positive_pixel_pairs
|
||||
|
||||
# Allows visualizing what the augmentor is up to.
|
||||
def visual_dbg(self, step, path):
|
||||
if not hasattr(self, 'aug1'):
|
||||
return
|
||||
torchvision.utils.save_image(self.aug1, os.path.join(path, "%i_aug1.png" % (step,)))
|
||||
torchvision.utils.save_image(self.aug2, os.path.join(path, "%i_aug2.png" % (step,)))
|
||||
|
||||
|
||||
@register_model
|
||||
def register_pixel_contrastive_learner(opt_net, opt):
|
||||
subnet = create_model(opt, opt_net['subnet'])
|
||||
kwargs = opt_net['kwargs']
|
||||
if 'subnet_pretrain_path' in opt_net.keys():
|
||||
sd = torch.load(opt_net['subnet_pretrain_path'])
|
||||
subnet.load_state_dict(sd, strict=False)
|
||||
return PixelCL(subnet, **kwargs)
|
153
codes/models/pixel_level_contrastive_learning/resnet_unet.py
Normal file
153
codes/models/pixel_level_contrastive_learning/resnet_unet.py
Normal file
|
@ -0,0 +1,153 @@
|
|||
# Resnet implementation that adds a u-net style up-conversion component to output values at a
|
||||
# specified pixel density.
|
||||
#
|
||||
# The downsampling part of the network is compatible with the built-in torch resnet for use in
|
||||
# transfer learning.
|
||||
#
|
||||
# Only resnet50 currently supported.
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torchvision.models.resnet import BasicBlock, Bottleneck, conv1x1, conv3x3
|
||||
from torchvision.models.utils import load_state_dict_from_url
|
||||
import torchvision
|
||||
|
||||
|
||||
from trainer.networks import register_model
|
||||
from utils.util import checkpoint
|
||||
|
||||
model_urls = {
|
||||
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
|
||||
}
|
||||
|
||||
|
||||
class ReverseBottleneck(nn.Module):
|
||||
|
||||
def __init__(self, inplanes, planes, groups=1, passthrough=False,
|
||||
base_width=64, dilation=1, norm_layer=None):
|
||||
super().__init__()
|
||||
if norm_layer is None:
|
||||
norm_layer = nn.BatchNorm2d
|
||||
width = int(planes * (base_width / 64.)) * groups
|
||||
self.passthrough = passthrough
|
||||
if passthrough:
|
||||
self.integrate = conv1x1(inplanes*2, inplanes)
|
||||
self.bn_integrate = norm_layer(inplanes)
|
||||
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
|
||||
self.conv1 = conv1x1(inplanes, width)
|
||||
self.bn1 = norm_layer(width)
|
||||
self.conv2 = conv3x3(width, width, groups, dilation)
|
||||
self.bn2 = norm_layer(width)
|
||||
self.residual_upsample = nn.Sequential(
|
||||
nn.Upsample(scale_factor=2, mode='nearest'),
|
||||
conv1x1(width, width),
|
||||
norm_layer(width),
|
||||
)
|
||||
self.conv3 = conv1x1(width, planes)
|
||||
self.bn3 = norm_layer(planes)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.upsample = nn.Sequential(
|
||||
nn.Upsample(scale_factor=2, mode='nearest'),
|
||||
conv1x1(inplanes, planes),
|
||||
norm_layer(planes),
|
||||
)
|
||||
|
||||
def forward(self, x, passthrough=None):
|
||||
if self.passthrough:
|
||||
x = self.bn_integrate(self.integrate(torch.cat([x, passthrough], dim=1)))
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.residual_upsample(out)
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.bn3(out)
|
||||
|
||||
identity = self.upsample(x)
|
||||
|
||||
out = out + identity
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class UResNet50(torchvision.models.resnet.ResNet):
|
||||
|
||||
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
|
||||
groups=1, width_per_group=64, replace_stride_with_dilation=None,
|
||||
norm_layer=None):
|
||||
super().__init__(block, layers, num_classes, zero_init_residual, groups, width_per_group,
|
||||
replace_stride_with_dilation, norm_layer)
|
||||
if norm_layer is None:
|
||||
norm_layer = nn.BatchNorm2d
|
||||
'''
|
||||
# For reference:
|
||||
self.layer1 = self._make_layer(block, 64, layers[0])
|
||||
self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
|
||||
dilate=replace_stride_with_dilation[0])
|
||||
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
|
||||
dilate=replace_stride_with_dilation[1])
|
||||
self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
|
||||
dilate=replace_stride_with_dilation[2])
|
||||
'''
|
||||
uplayers = []
|
||||
inplanes = 2048
|
||||
first = True
|
||||
for i in range(2):
|
||||
uplayers.append(ReverseBottleneck(inplanes, inplanes // 2, norm_layer=norm_layer, passthrough=not first))
|
||||
inplanes = inplanes // 2
|
||||
first = False
|
||||
self.uplayers = nn.ModuleList(uplayers)
|
||||
self.tail = nn.Sequential(conv1x1(1024, 512),
|
||||
norm_layer(512),
|
||||
nn.ReLU(),
|
||||
conv3x3(512, 512),
|
||||
norm_layer(512),
|
||||
nn.ReLU(),
|
||||
conv1x1(512, 128))
|
||||
|
||||
del self.fc # Not used in this implementation and just consumes a ton of GPU memory.
|
||||
|
||||
|
||||
def _forward_impl(self, x):
|
||||
# Should be the exact same implementation of torchvision.models.resnet.ResNet.forward_impl,
|
||||
# except using checkpoints on the body conv layers.
|
||||
x = self.conv1(x)
|
||||
x = self.bn1(x)
|
||||
x = self.relu(x)
|
||||
x = self.maxpool(x)
|
||||
|
||||
x1 = checkpoint(self.layer1, x)
|
||||
x2 = checkpoint(self.layer2, x1)
|
||||
x3 = checkpoint(self.layer3, x2)
|
||||
x4 = checkpoint(self.layer4, x3)
|
||||
unused = self.avgpool(x4) # This is performed for instance-level pixpro learning, even though it is unused.
|
||||
|
||||
x = checkpoint(self.uplayers[0], x4)
|
||||
x = checkpoint(self.uplayers[1], x, x3)
|
||||
#x = checkpoint(self.uplayers[2], x, x2)
|
||||
#x = checkpoint(self.uplayers[3], x, x1)
|
||||
|
||||
return checkpoint(self.tail, torch.cat([x, x2], dim=1))
|
||||
|
||||
def forward(self, x):
|
||||
return self._forward_impl(x)
|
||||
|
||||
|
||||
@register_model
|
||||
def register_u_resnet50(opt_net, opt):
|
||||
model = UResNet50(Bottleneck, [3, 4, 6, 3])
|
||||
return model
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
model = UResNet50(Bottleneck, [3,4,6,3])
|
||||
samp = torch.rand(1,3,224,224)
|
||||
model(samp)
|
||||
# For pixpro: attach to "tail.3"
|
|
@ -3,8 +3,8 @@ import torch
|
|||
from models.spinenet_arch import SpineNet
|
||||
|
||||
if __name__ == '__main__':
|
||||
pretrained_path = '../../experiments/byol_discriminator.pth'
|
||||
output_path = '../../experiments/byol_discriminator_extracted.pth'
|
||||
pretrained_path = '../../experiments/resnet_byol_diffframe_115k.pth'
|
||||
output_path = '../../experiments/resnet_byol_diffframe_115k_.pth'
|
||||
|
||||
wrap_key = 'online_encoder.net.'
|
||||
sd = torch.load(pretrained_path)
|
||||
|
|
|
@ -19,13 +19,13 @@ def main():
|
|||
# compression time. If read raw images during training, use 0 for faster IO speed.
|
||||
|
||||
opt['dest'] = 'file'
|
||||
opt['input_folder'] = 'F:\\4k6k\\datasets\\ns_images\\imagesets\\images'
|
||||
opt['save_folder'] = 'F:\\4k6k\\datasets\\ns_images\\imagesets\\512_with_ref_new'
|
||||
opt['crop_sz'] = [1024, 2048] # the size of each sub-image
|
||||
opt['step'] = [700, 1200] # step of the sliding crop window
|
||||
opt['exclusions'] = [[],[],[]] # image names matching these terms wont be included in the processing.
|
||||
opt['thres_sz'] = 256 # size threshold
|
||||
opt['resize_final_img'] = [.5, .25]
|
||||
opt['input_folder'] = 'F:\\4k6k\\datasets\\ns_images\\imagesets\\imageset_1024_square_with_new'
|
||||
opt['save_folder'] = 'F:\\4k6k\\datasets\\ns_images\\imagesets\\256_with_ref_v5'
|
||||
opt['crop_sz'] = [256, 512] # the size of each sub-image
|
||||
opt['step'] = [256, 512] # step of the sliding crop window
|
||||
opt['exclusions'] = [[],[]] # image names matching these terms wont be included in the processing.
|
||||
opt['thres_sz'] = 129 # size threshold
|
||||
opt['resize_final_img'] = [1, .5]
|
||||
opt['only_resize'] = False
|
||||
opt['vertical_split'] = False
|
||||
opt['input_image_max_size_before_being_halved'] = 5500 # As described, images larger than this dimensional size will be halved before anything else is done.
|
||||
|
|
|
@ -295,7 +295,7 @@ class Trainer:
|
|||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../experiments/train_xxfaces_styled_sr/train_xxfaces_styled_sr.yml')
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_pixpro_resnet.yml')
|
||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
||||
parser.add_argument('--local_rank', type=int, default=0)
|
||||
args = parser.parse_args()
|
||||
|
|
Loading…
Reference in New Issue
Block a user