forked from mrq/DL-Art-School
few things
This commit is contained in:
parent
f8108cfdb2
commit
a1bbde8a43
|
@ -4,6 +4,7 @@ import random
|
|||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
import os
|
||||
|
||||
import torchvision
|
||||
from torch.utils.data import DataLoader
|
||||
|
|
87
codes/models/image_latents/vit_latent.py
Normal file
87
codes/models/image_latents/vit_latent.py
Normal file
|
@ -0,0 +1,87 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from codes.models.arch_util import ResBlock
|
||||
from codes.models.lucidrains.x_transformers import Encoder
|
||||
from codes.trainer.networks import register_model
|
||||
|
||||
|
||||
class VitLatent(nn.Module):
|
||||
def __init__(self, top_dim, hidden_dim, depth, dropout=.1):
|
||||
super().__init__()
|
||||
self.upper = nn.Sequential(nn.Conv2d(3, top_dim, kernel_size=7, padding=3, stride=2),
|
||||
ResBlock(top_dim, use_conv=True, dropout=dropout),
|
||||
ResBlock(top_dim, out_channels=top_dim*2, down=True, use_conv=True, dropout=dropout),
|
||||
ResBlock(top_dim*2, use_conv=True, dropout=dropout),
|
||||
ResBlock(top_dim*2, out_channels=top_dim*4, down=True, use_conv=True, dropout=dropout),
|
||||
ResBlock(top_dim*4, use_conv=True, dropout=dropout),
|
||||
ResBlock(top_dim*4, out_channels=hidden_dim, down=True, use_conv=True, dropout=dropout),
|
||||
nn.GroupNorm(8, hidden_dim))
|
||||
self.encoder = Encoder(
|
||||
dim=hidden_dim,
|
||||
depth=depth,
|
||||
heads=hidden_dim//64,
|
||||
ff_dropout=dropout,
|
||||
attn_dropout=dropout,
|
||||
use_rmsnorm=True,
|
||||
ff_glu=True,
|
||||
rotary_pos_emb=True,
|
||||
ff_mult=2,
|
||||
do_checkpointing=True
|
||||
)
|
||||
|
||||
self.mlp = nn.Sequential(nn.Linear(hidden_dim, hidden_dim*2),
|
||||
nn.BatchNorm1d(hidden_dim*2),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Linear(hidden_dim*2, hidden_dim))
|
||||
|
||||
def provide_ema(self, ema):
|
||||
self.ema = ema
|
||||
|
||||
def project(self, x):
|
||||
h = self.upper(x)
|
||||
h = torch.flatten(h, 2).permute(0,2,1)
|
||||
h = self.encoder(h)[:,0]
|
||||
h_norm = F.normalize(h)
|
||||
return h_norm
|
||||
|
||||
def forward(self, x1, x2):
|
||||
h1 = self.project(x1)
|
||||
#p1 = self.mlp(h1)
|
||||
h2 = self.project(x2)
|
||||
#p2 = self.mlp(h2)
|
||||
with torch.no_grad():
|
||||
he1 = self.ema.project(x1)
|
||||
he2 = self.ema.project(x2)
|
||||
|
||||
def csim(h1, h2):
|
||||
b = x1.shape[0]
|
||||
sim = F.cosine_similarity(h1.unsqueeze(0), h2.unsqueeze(1).detach(), 2)
|
||||
eye = torch.eye(b, device=x1.device)
|
||||
neye = eye != 1
|
||||
return -(sim*eye).sum()/b, (sim*neye).sum()/(b**2-b)
|
||||
|
||||
pos, neg = csim(h1, he2)
|
||||
pos2, neg2 = csim(h2, he1)
|
||||
return (pos+pos2)/2, (neg+neg2)/2
|
||||
|
||||
def get_grad_norm_parameter_groups(self):
|
||||
return {
|
||||
'upper': list(self.upper.parameters()),
|
||||
'encoder': list(self.encoder.parameters()),
|
||||
'mlp': list(self.mlp.parameters()),
|
||||
}
|
||||
|
||||
|
||||
@register_model
|
||||
def register_vit_latent(opt_net, opt):
|
||||
return VitLatent(**opt_net['kwargs'])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
net = VitLatent(128, 1024, 8)
|
||||
net.provide_ema(net)
|
||||
x1 = torch.randn(2,3,244,244)
|
||||
x2 = torch.randn(2,3,244,244)
|
||||
net(x1,x2)
|
|
@ -340,7 +340,7 @@ class Trainer:
|
|||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_music_multilevel_sr.yml')
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_vit_latent.yml')
|
||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
||||
args = parser.parse_args()
|
||||
opt = option.parse(args.opt, is_train=True)
|
||||
|
|
|
@ -174,6 +174,8 @@ class ExtensibleTrainer(BaseModel):
|
|||
self.emas[k] = copy.deepcopy(v)
|
||||
if self.ema_on_cpu:
|
||||
self.emas[k] = self.emas[k].cpu()
|
||||
if hasattr(v, 'provide_ema'):
|
||||
v.provide_ema(self.emas[k])
|
||||
found += 1
|
||||
assert found == len(self.netsG) + len(self.netsD)
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user