unified_voice: introduce paired embeddings

This commit is contained in:
James Betker 2021-12-26 15:33:05 -07:00
parent 6996dfd9d5
commit a698d3f525

View File

@ -68,8 +68,10 @@ class UnifiedGptVoice(nn.Module):
self.mel_length_compression = mel_length_compression self.mel_length_compression = mel_length_compression
self.conditioning_encoder = ConditioningEncoder(80, model_dim, num_attn_heads=heads) self.conditioning_encoder = ConditioningEncoder(80, model_dim, num_attn_heads=heads)
self.text_embedding = nn.Embedding(self.number_text_tokens, model_dim) self.text_embedding = nn.Embedding(self.number_text_tokens, model_dim)
self.text_pos_embedding = nn.Embedding(self.max_symbols_per_phrase + 1, model_dim) self.text_pos_solo_embedding = nn.Embedding(self.max_symbols_per_phrase + 1, model_dim)
self.mel_pos_embedding = nn.Embedding(self.max_mel_tokens + 1, model_dim) self.text_pos_paired_embedding = nn.Embedding(self.max_symbols_per_phrase + 1, model_dim)
self.mel_pos_solo_embedding = nn.Embedding(self.max_mel_tokens + 1, model_dim)
self.mel_pos_paired_embedding = nn.Embedding(self.max_mel_tokens + 1, model_dim)
seq_length = 2+self.max_total_tokens+self.max_conditioning_inputs seq_length = 2+self.max_total_tokens+self.max_conditioning_inputs
self.gpt_config = GPT2Config(vocab_size=self.number_mel_codes, self.gpt_config = GPT2Config(vocab_size=self.number_mel_codes,
n_positions=seq_length, n_positions=seq_length,
@ -90,7 +92,8 @@ class UnifiedGptVoice(nn.Module):
self.max_conditioning_length = max_conditioning_length self.max_conditioning_length = max_conditioning_length
# Initialize the embeddings per the GPT-2 scheme # Initialize the embeddings per the GPT-2 scheme
for module in [self.text_embedding, self.text_pos_embedding, self.mel_pos_embedding]: for module in [self.text_embedding, self.text_pos_solo_embedding, self.text_pos_paired_embedding,
self.mel_pos_solo_embedding, self.mel_pos_paired_embedding]:
module.weight.data.normal_(mean=0.0, std=self.gpt.config.initializer_range) module.weight.data.normal_(mean=0.0, std=self.gpt.config.initializer_range)
if module.padding_idx is not None: if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_() module.weight.data[module.padding_idx].zero_()
@ -168,10 +171,10 @@ class UnifiedGptVoice(nn.Module):
speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input).unsqueeze(1) speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input).unsqueeze(1)
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token) text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(torch.arange(text_inputs.shape[1], device=text_inputs.device)) text_emb = self.text_embedding(text_inputs) + self.text_pos_paired_embedding(torch.arange(text_inputs.shape[1], device=text_inputs.device))
mel_inputs, mel_targets = self.build_aligned_inputs_and_targets(mel_inputs, self.start_mel_token, self.stop_mel_token) mel_inputs, mel_targets = self.build_aligned_inputs_and_targets(mel_inputs, self.start_mel_token, self.stop_mel_token)
mel_emb = self.gpt.get_input_embeddings()(mel_inputs) mel_emb = self.gpt.get_input_embeddings()(mel_inputs)
mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device)) mel_emb = mel_emb + self.mel_pos_paired_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device))
if text_first: if text_first:
text_logits, mel_logits = self.get_logits(speech_conditioning_input, text_emb, self.text_head, mel_emb, self.mel_head, get_attns=return_attentions) text_logits, mel_logits = self.get_logits(speech_conditioning_input, text_emb, self.text_head, mel_emb, self.mel_head, get_attns=return_attentions)
else: else:
@ -194,7 +197,7 @@ class UnifiedGptVoice(nn.Module):
speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input).unsqueeze(1) speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input).unsqueeze(1)
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token) text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(torch.arange(text_inputs.shape[1], device=text_inputs.device)) text_emb = self.text_embedding(text_inputs) + self.text_pos_solo_embedding(torch.arange(text_inputs.shape[1], device=text_inputs.device))
text_logits = self.get_logits(speech_conditioning_input, text_emb, self.text_head) text_logits = self.get_logits(speech_conditioning_input, text_emb, self.text_head)
loss_text = F.cross_entropy(text_logits, text_targets.long()) loss_text = F.cross_entropy(text_logits, text_targets.long())
return loss_text.mean() return loss_text.mean()
@ -211,18 +214,17 @@ class UnifiedGptVoice(nn.Module):
mel_inputs, mel_targets = self.build_aligned_inputs_and_targets(mel_inputs, self.start_mel_token, self.stop_mel_token) mel_inputs, mel_targets = self.build_aligned_inputs_and_targets(mel_inputs, self.start_mel_token, self.stop_mel_token)
mel_emb = self.gpt.get_input_embeddings()(mel_inputs) mel_emb = self.gpt.get_input_embeddings()(mel_inputs)
mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device)) mel_emb = mel_emb + self.mel_pos_solo_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device))
mel_logits = self.get_logits(speech_conditioning_input, mel_emb, self.mel_head) mel_logits = self.get_logits(speech_conditioning_input, mel_emb, self.mel_head)
loss_mel = F.cross_entropy(mel_logits, mel_targets.long()) loss_mel = F.cross_entropy(mel_logits, mel_targets.long())
return loss_mel.mean() return loss_mel.mean()
def inference_speech(self, speech_conditioning_input, text_inputs, **hf_generate_kwargs): def inference_speech(self, speech_conditioning_input, text_inputs, **hf_generate_kwargs):
if not hasattr(self, 'inference_model'): if not hasattr(self, 'inference_model'):
self.inference_model = GPT2InferenceModel(self.gpt_config, self.gpt, self.mel_pos_embedding, self.final_norm, self.mel_head) self.inference_model = GPT2InferenceModel(self.gpt_config, self.gpt, self.mel_pos_paired_embedding, self.final_norm, self.mel_head)
text_inputs = F.pad(text_inputs, (0, self.max_symbols_per_phrase - text_inputs.shape[1]), value=self.stop_text_token)
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token) text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(torch.arange(text_inputs.shape[1], device=text_inputs.device)) text_emb = self.text_embedding(text_inputs) + self.text_pos_paired_embedding(torch.arange(text_inputs.shape[1], device=text_inputs.device))
# Randomly permute the conditioning spectrogram, to destroy any structure present. # Randomly permute the conditioning spectrogram, to destroy any structure present.
speech_conditioning_input = self.randomly_permute_conditioning_input(speech_conditioning_input) speech_conditioning_input = self.randomly_permute_conditioning_input(speech_conditioning_input)
@ -235,7 +237,7 @@ class UnifiedGptVoice(nn.Module):
fake_inputs[:,-1] = self.start_mel_token fake_inputs[:,-1] = self.start_mel_token
gen = self.inference_model.generate(fake_inputs, bos_token_id=self.start_mel_token, pad_token_id=self.stop_mel_token, eos_token_id=self.stop_mel_token, gen = self.inference_model.generate(fake_inputs, bos_token_id=self.start_mel_token, pad_token_id=self.stop_mel_token, eos_token_id=self.stop_mel_token,
max_length=emb.shape[1]+self.max_mel_tokens, **hf_generate_kwargs) max_length=self.gpt_config.n_positions, **hf_generate_kwargs)
return gen[:, fake_inputs.shape[1]:] return gen[:, fake_inputs.shape[1]:]