forked from mrq/DL-Art-School
Support vocoder type diffusion in audio_diffusion_fid
This commit is contained in:
parent
58f6c9805b
commit
b7319ab518
|
@ -15,7 +15,7 @@ import trainer.eval.evaluator as evaluator
|
||||||
from data.audio.paired_voice_audio_dataset import load_tsv_aligned_codes
|
from data.audio.paired_voice_audio_dataset import load_tsv_aligned_codes
|
||||||
from data.audio.unsupervised_audio_dataset import load_audio
|
from data.audio.unsupervised_audio_dataset import load_audio
|
||||||
from models.clip.mel_text_clip import MelTextCLIP
|
from models.clip.mel_text_clip import MelTextCLIP
|
||||||
from models.tacotron2.text import sequence_to_text
|
from models.tacotron2.text import sequence_to_text, text_to_sequence
|
||||||
from scripts.audio.gen.speech_synthesis_utils import load_discrete_vocoder_diffuser, wav_to_mel, load_speech_dvae, \
|
from scripts.audio.gen.speech_synthesis_utils import load_discrete_vocoder_diffuser, wav_to_mel, load_speech_dvae, \
|
||||||
convert_mel_to_codes
|
convert_mel_to_codes
|
||||||
from utils.util import ceil_multiple, opt_get
|
from utils.util import ceil_multiple, opt_get
|
||||||
|
@ -62,21 +62,24 @@ class AudioDiffusionFid(evaluator.Evaluator):
|
||||||
'conditioning_input': real_resampled})
|
'conditioning_input': real_resampled})
|
||||||
return gen, real_resampled, sample_rate
|
return gen, real_resampled, sample_rate
|
||||||
|
|
||||||
def perform_dvae_diffusion(self, audio, codes, text, sample_rate=5500):
|
def perform_diffusion_vocoder(self, audio, codes, text, sample_rate=5500):
|
||||||
mel = wav_to_mel(audio)
|
mel = wav_to_mel(audio)
|
||||||
mel_codes = convert_mel_to_codes(self.dvae, mel)
|
mel_codes = convert_mel_to_codes(self.dvae, mel)
|
||||||
|
text_codes = text_to_sequence(text)
|
||||||
text_codes = sequence_to_text(text)
|
|
||||||
|
|
||||||
real_resampled = torchaudio.functional.resample(audio, 22050, sample_rate).unsqueeze(0)
|
real_resampled = torchaudio.functional.resample(audio, 22050, sample_rate).unsqueeze(0)
|
||||||
aligned_codes_compression_factor = sample_rate * 221 // 11025
|
|
||||||
output_size = codes.shape[-1]*aligned_codes_compression_factor
|
output_size = real_resampled.shape[-1]
|
||||||
|
aligned_codes_compression_factor = output_size // mel_codes.shape[-1]
|
||||||
padded_size = ceil_multiple(output_size, 2048)
|
padded_size = ceil_multiple(output_size, 2048)
|
||||||
|
padding_added = padded_size - output_size
|
||||||
|
padding_needed_for_codes = padding_added // aligned_codes_compression_factor
|
||||||
|
if padding_needed_for_codes > 0:
|
||||||
|
mel_codes = F.pad(mel_codes, (0, padding_needed_for_codes))
|
||||||
output_shape = (1, 1, padded_size)
|
output_shape = (1, 1, padded_size)
|
||||||
gen = self.diffuser.p_sample_loop(self.model, output_shape,
|
gen = self.diffuser.p_sample_loop(self.model, output_shape,
|
||||||
model_kwargs={'tokens': mel_codes.unsqueeze(0),
|
model_kwargs={'tokens': mel_codes,
|
||||||
'conditioning_input': real_resampled,
|
'conditioning_input': audio.unsqueeze(0),
|
||||||
'unaligned_input': text_codes})
|
'unaligned_input': torch.tensor(text_codes, device=audio.device).unsqueeze(0)})
|
||||||
return gen, real_resampled, sample_rate
|
return gen, real_resampled, sample_rate
|
||||||
|
|
||||||
def load_projector(self):
|
def load_projector(self):
|
||||||
|
@ -92,7 +95,7 @@ class AudioDiffusionFid(evaluator.Evaluator):
|
||||||
return model
|
return model
|
||||||
|
|
||||||
def project(self, projector, sample, sample_rate):
|
def project(self, projector, sample, sample_rate):
|
||||||
sample = torchaudio.resample(sample, sample_rate, 22050)
|
sample = torchaudio.functional.resample(sample, sample_rate, 22050)
|
||||||
mel = wav_to_mel(sample)
|
mel = wav_to_mel(sample)
|
||||||
return projector.get_speech_projection(mel).squeeze(0) # Getting rid of the batch dimension means it's just [hidden_dim]
|
return projector.get_speech_projection(mel).squeeze(0) # Getting rid of the batch dimension means it's just [hidden_dim]
|
||||||
|
|
||||||
|
@ -125,10 +128,10 @@ class AudioDiffusionFid(evaluator.Evaluator):
|
||||||
path, text, codes = self.data[i + self.env['rank']]
|
path, text, codes = self.data[i + self.env['rank']]
|
||||||
audio = load_audio(path, 22050).to(self.dev)
|
audio = load_audio(path, 22050).to(self.dev)
|
||||||
codes = codes.to(self.dev)
|
codes = codes.to(self.dev)
|
||||||
sample, ref, sample_rate = self.perform_diffusion_fn(audio, codes, text)
|
sample, ref, sample_rate = self.diffusion_fn(audio, codes, text)
|
||||||
|
|
||||||
gen_projections.append(self.project(projector, sample).cpu(), sample_rate) # Store on CPU to avoid wasting GPU memory.
|
gen_projections.append(self.project(projector, sample, sample_rate).cpu()) # Store on CPU to avoid wasting GPU memory.
|
||||||
real_projections.append(self.project(projector, ref).cpu(), sample_rate)
|
real_projections.append(self.project(projector, ref, sample_rate).cpu())
|
||||||
|
|
||||||
torchaudio.save(os.path.join(save_path, f"{self.env['rank']}_{i}_gen.wav"), sample.squeeze(0).cpu(), sample_rate)
|
torchaudio.save(os.path.join(save_path, f"{self.env['rank']}_{i}_gen.wav"), sample.squeeze(0).cpu(), sample_rate)
|
||||||
torchaudio.save(os.path.join(save_path, f"{self.env['rank']}_{i}_real.wav"), ref.squeeze(0).cpu(), sample_rate)
|
torchaudio.save(os.path.join(save_path, f"{self.env['rank']}_{i}_real.wav"), ref.squeeze(0).cpu(), sample_rate)
|
||||||
|
@ -149,9 +152,9 @@ if __name__ == '__main__':
|
||||||
from utils.util import load_model_from_config
|
from utils.util import load_model_from_config
|
||||||
|
|
||||||
diffusion = load_model_from_config('X:\\dlas\\experiments\\train_diffusion_tts7_dvae_thin_with_text.yml', 'generator',
|
diffusion = load_model_from_config('X:\\dlas\\experiments\\train_diffusion_tts7_dvae_thin_with_text.yml', 'generator',
|
||||||
also_load_savepoint=False, load_path='X:\\dlas\\experiments\\train_diffusion_tts7_dvae_thin_with_text\\models\\12500_generator_ema.pth').cuda()
|
also_load_savepoint=False, load_path='X:\\dlas\\experiments\\train_diffusion_tts7_dvae_thin_with_text\\models\\5500_generator_ema.pth').cuda()
|
||||||
opt_eval = {'eval_tsv': 'Y:\\libritts\\test-clean\\transcribed-brief-w2v.tsv', 'diffusion_steps': 50,
|
opt_eval = {'eval_tsv': 'Y:\\libritts\\test-clean\\transcribed-brief-w2v.tsv', 'diffusion_steps': 50,
|
||||||
'diffusion_schedule': 'linear', 'diffusion_type': 'vocoder'}
|
'diffusion_schedule': 'linear', 'diffusion_type': 'vocoder'}
|
||||||
env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval', 'step': 500, 'device': 'cuda', 'opt': {}}
|
env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval', 'step': 500, 'device': 'cuda', 'opt': {}}
|
||||||
eval = AudioDiffusionFid(diffusion, opt_eval, env)
|
eval = AudioDiffusionFid(diffusion, opt_eval, env)
|
||||||
eval.perform_eval()
|
print(eval.perform_eval())
|
|
@ -128,10 +128,10 @@ if __name__ == '__main__':
|
||||||
'clip_lengths_key': 'wav_lengths',
|
'clip_lengths_key': 'wav_lengths',
|
||||||
'text_seq_key': 'padded_text',
|
'text_seq_key': 'padded_text',
|
||||||
'text_seq_lengths_key': 'text_lengths',
|
'text_seq_lengths_key': 'text_lengths',
|
||||||
'kenlm_path': 'Y:\\bookscorpus-5gram\\5gram.bin'
|
#'kenlm_path': 'Y:\\bookscorpus-5gram\\5gram.bin',
|
||||||
}
|
}
|
||||||
model = Wav2VecWrapper(vocab_size=148, basis_model='facebook/wav2vec2-large-robust-ft-libri-960h', freeze_transformer=True, checkpointing_enabled=False)
|
model = Wav2VecWrapper(vocab_size=148, basis_model='facebook/wav2vec2-large-robust-ft-libri-960h', freeze_transformer=True, checkpointing_enabled=False)
|
||||||
weights = torch.load('X:\\dlas\\experiments/train_wav2vec_mass_large/models/13250_wav2vec.pth')
|
weights = torch.load('D:\\dlas\\experiments\\train_wav2vec_mass_large2\\models\\17000_wav2vec.pth')
|
||||||
model.load_state_dict(weights)
|
model.load_state_dict(weights)
|
||||||
model = model.cuda()
|
model = model.cuda()
|
||||||
eval = WerEvaluator(model, opt_eval, env)
|
eval = WerEvaluator(model, opt_eval, env)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user