Fix some bugs, checkin work on vqvae3

This commit is contained in:
James Betker 2021-03-02 20:56:19 -07:00
parent f89ea5f1c6
commit cf9a6da889
4 changed files with 216 additions and 11 deletions

View File

@ -2,9 +2,8 @@ import math
import torch
import torch.nn as nn
import switched_conv_cuda_naive
from lambda_networks import LambdaLayer
from torch.nn import init, Conv2d, MSELoss
from torch.nn import init, Conv2d, MSELoss, ZeroPad2d
import torch.nn.functional as F
from tqdm import tqdm
import torch.distributed as dist
@ -24,10 +23,14 @@ def SwitchedConvRoutingNormal(input, selector, weight, bias, stride=1):
class SwitchedConvHardRoutingFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, input, selector, weight, bias, stride=1):
# Pre-pad the input.
input = ZeroPad2d(weight.shape[-1]//2)(input)
# Build hard attention mask from selector input
b, s, h, w = selector.shape
mask = selector.argmax(dim=1).int()
import switched_conv_cuda_naive
output = switched_conv_cuda_naive.forward(input, mask, weight, bias, stride)
ctx.stride = stride
@ -47,7 +50,13 @@ class SwitchedConvHardRoutingFunction(torch.autograd.Function):
# and zeros that is multiplied by the output.)
grad_sel = (gradIn * output).sum(dim=1, keepdim=True).repeat(1,ctx.breadth,1,1)
import switched_conv_cuda_naive
grad, grad_w, grad_b = switched_conv_cuda_naive.backward(input, gradIn.contiguous(), mask, weight, bias, ctx.stride)
# Remove input padding from grad
padding = weight.shape[-1] // 2
if padding > 0:
grad = grad[:,:,padding:-padding,padding:-padding]
return grad, grad_sel, grad_w, grad_b, None
@ -204,7 +213,8 @@ class SwitchedConvHardRouting(nn.Module):
Conv2d(breadth, breadth, 1, stride=self.stride))
else:
self.coupler = None
self.gate = HardRoutingGate(breadth, hard_en=hard_en)
self.gate = HardRoutingGate(breadth, hard_en=True)
self.hard_en = hard_en
self.weight = nn.Parameter(torch.empty(out_c, in_c, breadth, kernel_sz, kernel_sz))
if bias:
@ -251,7 +261,7 @@ class SwitchedConvHardRouting(nn.Module):
self.last_select = selector.detach().clone()
self.latest_masks = (selector.max(dim=1, keepdim=True)[0].repeat(1,self.breadth,1,1) == selector).float().argmax(dim=1)
if False:
if self.hard_en:
# This is a custom CUDA implementation which should be faster and less memory intensive (once completed).
return SwitchedConvHardRoutingFunction.apply(input, selector, self.weight, self.bias, self.stride)
else:

View File

@ -232,27 +232,41 @@ def register_vqvae3_hard_switch(opt_net, opt):
def performance_test():
# For breadth=32:
# Custom_cuda_naive: 28.9s
# Custom_cuda_naive: 15.4
# Torch_native: 29.2s
#
# For breadth=8
# Custom_cuda_naive: 18.4s
# Custom_cuda_naive: 9.8
# Torch_native: 10s
cfg = {
'mode': 'lambda',
'breadth': 8,
'breadth': 16,
'hard_enabled': True,
'dropout': 0.4
'dropout': 0,
}
net = VQVAE3HardSwitch(cfg=cfg).to('cuda')
net = VQVAE3HardSwitch(cfg=cfg).to('cuda').double()
cfg['hard_enabled'] = False
netO = VQVAE3HardSwitch(cfg=cfg).double()
netO.load_state_dict(net.state_dict())
netO = netO.cpu()
loss = nn.L1Loss()
opt = torch.optim.Adam(net.parameters(), lr=1e-4)
started = time()
for j in tqdm(range(10)):
inp = torch.rand((8, 3, 256, 256), device='cuda')
inp = torch.rand((4, 3, 64, 64), device='cuda', dtype=torch.double)
res = net(inp)[0]
l = loss(res, inp)
l.backward()
res2 = netO(inp.cpu())[0]
l = loss(res2, inp.cpu())
l.backward()
for p, op in zip(net.parameters(), netO.parameters()):
diff = p.grad.cpu() - op.grad
print(diff.max())
opt.step()
net.zero_grad()
print("Elapsed: ", (time()-started))

View File

@ -0,0 +1,180 @@
import torch
from kornia import filter2D
from torch import nn
from torch.nn import functional as F
import torch.distributed as distributed
from models.vqvae.vqvae import ResBlock, Quantize
from trainer.networks import register_model
from utils.util import checkpoint, opt_get
# Upsamples and blurs (similar to StyleGAN). Replaces ConvTranspose2D from the original paper.
class UpsampleConv(nn.Module):
def __init__(self, in_filters, out_filters, kernel_size, padding):
super().__init__()
self.conv = nn.Conv2d(in_filters, out_filters, kernel_size, padding=padding)
def forward(self, x):
up = torch.nn.functional.interpolate(x, scale_factor=2)
return self.conv(up)
class Encoder(nn.Module):
def __init__(self, in_channel, channel, n_res_block, n_res_channel, stride):
super().__init__()
if stride == 4:
blocks = [
nn.Conv2d(in_channel, channel // 2, 5, stride=2, padding=2),
nn.LeakyReLU(inplace=True),
nn.Conv2d(channel // 2, channel, 5, stride=2, padding=2),
nn.LeakyReLU(inplace=True),
nn.Conv2d(channel, channel, 3, padding=1),
]
elif stride == 2:
blocks = [
nn.Conv2d(in_channel, channel // 2, 5, stride=2, padding=2),
nn.LeakyReLU(inplace=True),
nn.Conv2d(channel // 2, channel, 3, padding=1),
]
for i in range(n_res_block):
blocks.append(ResBlock(channel, n_res_channel))
blocks.append(nn.LeakyReLU(inplace=True))
self.blocks = nn.Sequential(*blocks)
def forward(self, input):
return self.blocks(input)
class Decoder(nn.Module):
def __init__(
self, in_channel, out_channel, channel, n_res_block, n_res_channel, stride
):
super().__init__()
blocks = [nn.Conv2d(in_channel, channel, 3, padding=1)]
for i in range(n_res_block):
blocks.append(ResBlock(channel, n_res_channel))
blocks.append(nn.LeakyReLU(inplace=True))
if stride == 4:
blocks.extend(
[
UpsampleConv(channel, channel // 2, 5, padding=2),
nn.LeakyReLU(inplace=True),
UpsampleConv(
channel // 2, out_channel, 5, padding=2
),
]
)
elif stride == 2:
blocks.append(
UpsampleConv(channel, out_channel, 5, padding=2)
)
self.blocks = nn.Sequential(*blocks)
def forward(self, input):
return self.blocks(input)
class VQVAE3(nn.Module):
def __init__(
self,
in_channel=3,
channel=128,
n_res_block=2,
n_res_channel=32,
codebook_dim=64,
codebook_size=512,
decay=0.99,
):
super().__init__()
self.initial_conv = nn.Sequential(*[nn.Conv2d(in_channel, 32, 3, padding=1),
nn.LeakyReLU(inplace=True)])
self.enc_b = Encoder(32, channel, n_res_block, n_res_channel, stride=4)
self.enc_t = Encoder(channel, channel, n_res_block, n_res_channel, stride=2)
self.quantize_conv_t = nn.Conv2d(channel, codebook_dim, 1)
self.quantize_t = Quantize(codebook_dim, codebook_size)
self.dec_t = Decoder(
codebook_dim, codebook_dim, channel, n_res_block, n_res_channel, stride=2
)
self.quantize_conv_b = nn.Conv2d(codebook_dim + channel, codebook_dim, 1)
self.quantize_b = Quantize(codebook_dim, codebook_size)
self.upsample_t = UpsampleConv(
codebook_dim, codebook_dim, 5, padding=2
)
self.dec = Decoder(
codebook_dim + codebook_dim,
32,
channel,
n_res_block,
n_res_channel,
stride=4,
)
self.final_conv = nn.Conv2d(32, in_channel, 3, padding=1)
def forward(self, input):
quant_t, quant_b, diff, _, _ = self.encode(input)
dec = self.decode(quant_t, quant_b)
return dec, diff
def encode(self, input):
fea = self.initial_conv(input)
enc_b = checkpoint(self.enc_b, fea)
enc_t = checkpoint(self.enc_t, enc_b)
quant_t = self.quantize_conv_t(enc_t).permute(0, 2, 3, 1)
quant_t, diff_t, id_t = self.quantize_t(quant_t)
quant_t = quant_t.permute(0, 3, 1, 2)
diff_t = diff_t.unsqueeze(0)
dec_t = checkpoint(self.dec_t, quant_t)
enc_b = torch.cat([dec_t, enc_b], 1)
quant_b = checkpoint(self.quantize_conv_b, enc_b).permute(0, 2, 3, 1)
quant_b, diff_b, id_b = self.quantize_b(quant_b)
quant_b = quant_b.permute(0, 3, 1, 2)
diff_b = diff_b.unsqueeze(0)
return quant_t, quant_b, diff_t + diff_b, id_t, id_b
def decode(self, quant_t, quant_b):
upsample_t = self.upsample_t(quant_t)
quant = torch.cat([upsample_t, quant_b], 1)
dec = checkpoint(self.dec, quant)
dec = checkpoint(self.final_conv, dec)
return dec
def decode_code(self, code_t, code_b):
quant_t = self.quantize_t.embed_code(code_t)
quant_t = quant_t.permute(0, 3, 1, 2)
quant_b = self.quantize_b.embed_code(code_b)
quant_b = quant_b.permute(0, 3, 1, 2)
dec = self.decode(quant_t, quant_b)
return dec
@register_model
def register_vqvae3(opt_net, opt):
kw = opt_get(opt_net, ['kwargs'], {})
return VQVAE3(**kw)
if __name__ == '__main__':
v = VQVAE3()
print(v(torch.randn(1,3,128,128))[0].shape)

View File

@ -17,4 +17,5 @@ linear_attention_transformer
vector_quantize_pytorch
orjson
einops
gsa-pytorch
gsa-pytorch
lambda-networks