forked from mrq/DL-Art-School
Remove unused waveform_gens
This commit is contained in:
parent
47662b9ec5
commit
d66ab2d28c
|
@ -1,460 +0,0 @@
|
||||||
import random
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
import torch.nn.functional as F
|
|
||||||
from torch import autocast
|
|
||||||
from x_transformers import Encoder
|
|
||||||
|
|
||||||
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
|
|
||||||
from models.diffusion.unet_diffusion import AttentionBlock, TimestepEmbedSequential, \
|
|
||||||
Downsample, Upsample, TimestepBlock
|
|
||||||
from models.audio.tts.mini_encoder import AudioMiniEncoder
|
|
||||||
from models.audio.tts.unet_diffusion_tts7 import CheckpointedXTransformerEncoder
|
|
||||||
from scripts.audio.gen.use_diffuse_tts import ceil_multiple
|
|
||||||
from trainer.networks import register_model
|
|
||||||
from utils.util import checkpoint
|
|
||||||
|
|
||||||
def is_sequence(t):
|
|
||||||
return t.dtype == torch.long
|
|
||||||
|
|
||||||
|
|
||||||
class ResBlock(TimestepBlock):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
channels,
|
|
||||||
emb_channels,
|
|
||||||
dropout,
|
|
||||||
out_channels=None,
|
|
||||||
dims=2,
|
|
||||||
kernel_size=3,
|
|
||||||
efficient_config=True,
|
|
||||||
use_scale_shift_norm=False,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.channels = channels
|
|
||||||
self.emb_channels = emb_channels
|
|
||||||
self.dropout = dropout
|
|
||||||
self.out_channels = out_channels or channels
|
|
||||||
self.use_scale_shift_norm = use_scale_shift_norm
|
|
||||||
padding = {1: 0, 3: 1, 5: 2}[kernel_size]
|
|
||||||
eff_kernel = 1 if efficient_config else 3
|
|
||||||
eff_padding = 0 if efficient_config else 1
|
|
||||||
|
|
||||||
self.in_layers = nn.Sequential(
|
|
||||||
normalization(channels),
|
|
||||||
nn.SiLU(),
|
|
||||||
conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding),
|
|
||||||
)
|
|
||||||
|
|
||||||
self.emb_layers = nn.Sequential(
|
|
||||||
nn.SiLU(),
|
|
||||||
linear(
|
|
||||||
emb_channels,
|
|
||||||
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
|
||||||
),
|
|
||||||
)
|
|
||||||
self.out_layers = nn.Sequential(
|
|
||||||
normalization(self.out_channels),
|
|
||||||
nn.SiLU(),
|
|
||||||
nn.Dropout(p=dropout),
|
|
||||||
zero_module(
|
|
||||||
conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding)
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
if self.out_channels == channels:
|
|
||||||
self.skip_connection = nn.Identity()
|
|
||||||
else:
|
|
||||||
self.skip_connection = conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding)
|
|
||||||
|
|
||||||
def forward(self, x, emb):
|
|
||||||
"""
|
|
||||||
Apply the block to a Tensor, conditioned on a timestep embedding.
|
|
||||||
|
|
||||||
:param x: an [N x C x ...] Tensor of features.
|
|
||||||
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
|
||||||
:return: an [N x C x ...] Tensor of outputs.
|
|
||||||
"""
|
|
||||||
return checkpoint(
|
|
||||||
self._forward, x, emb
|
|
||||||
)
|
|
||||||
|
|
||||||
def _forward(self, x, emb):
|
|
||||||
h = self.in_layers(x)
|
|
||||||
emb_out = self.emb_layers(emb).type(h.dtype)
|
|
||||||
while len(emb_out.shape) < len(h.shape):
|
|
||||||
emb_out = emb_out[..., None]
|
|
||||||
if self.use_scale_shift_norm:
|
|
||||||
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
|
||||||
scale, shift = torch.chunk(emb_out, 2, dim=1)
|
|
||||||
h = out_norm(h) * (1 + scale) + shift
|
|
||||||
h = out_rest(h)
|
|
||||||
else:
|
|
||||||
h = h + emb_out
|
|
||||||
h = self.out_layers(h)
|
|
||||||
return self.skip_connection(x) + h
|
|
||||||
|
|
||||||
|
|
||||||
class ResBlockSimple(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
channels,
|
|
||||||
dropout,
|
|
||||||
out_channels=None,
|
|
||||||
dims=1,
|
|
||||||
kernel_size=3,
|
|
||||||
efficient_config=True,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.channels = channels
|
|
||||||
self.dropout = dropout
|
|
||||||
self.out_channels = out_channels or channels
|
|
||||||
padding = {1: 0, 3: 1, 5: 2}[kernel_size]
|
|
||||||
eff_kernel = 1 if efficient_config else 3
|
|
||||||
eff_padding = 0 if efficient_config else 1
|
|
||||||
|
|
||||||
self.in_layers = nn.Sequential(
|
|
||||||
normalization(channels),
|
|
||||||
nn.SiLU(),
|
|
||||||
conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding),
|
|
||||||
)
|
|
||||||
self.out_layers = nn.Sequential(
|
|
||||||
normalization(self.out_channels),
|
|
||||||
nn.SiLU(),
|
|
||||||
nn.Dropout(p=dropout),
|
|
||||||
zero_module(
|
|
||||||
conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding)
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
if self.out_channels == channels:
|
|
||||||
self.skip_connection = nn.Identity()
|
|
||||||
else:
|
|
||||||
self.skip_connection = conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
return checkpoint(
|
|
||||||
self._forward, x
|
|
||||||
)
|
|
||||||
|
|
||||||
def _forward(self, x):
|
|
||||||
h = self.in_layers(x)
|
|
||||||
h = self.out_layers(h)
|
|
||||||
return self.skip_connection(x) + h
|
|
||||||
|
|
||||||
|
|
||||||
class AudioVAE(nn.Module):
|
|
||||||
def __init__(self, channels, dropout):
|
|
||||||
super().__init__()
|
|
||||||
# 1, 4, 16, 64, 256
|
|
||||||
level_resblocks = [1, 1, 2, 2, 2]
|
|
||||||
level_ch_mult = [1, 2, 4, 6, 8]
|
|
||||||
levels = []
|
|
||||||
for i, (resblks, chdiv) in enumerate(zip(level_resblocks, level_ch_mult)):
|
|
||||||
blocks = [ResBlockSimple(channels*chdiv, dropout=dropout, kernel_size=5) for _ in range(resblks)]
|
|
||||||
if i != len(level_ch_mult)-1:
|
|
||||||
blocks.append(nn.Conv1d(channels*chdiv, channels*level_ch_mult[i+1], kernel_size=5, padding=2, stride=4))
|
|
||||||
levels.append(nn.Sequential(*blocks))
|
|
||||||
self.down_levels = nn.ModuleList(levels)
|
|
||||||
|
|
||||||
levels = []
|
|
||||||
lastdiv = None
|
|
||||||
for resblks, chdiv in reversed(list(zip(level_resblocks, level_ch_mult))):
|
|
||||||
if lastdiv is not None:
|
|
||||||
blocks = [nn.Conv1d(channels*lastdiv, channels*chdiv, kernel_size=5, padding=2)]
|
|
||||||
else:
|
|
||||||
blocks = []
|
|
||||||
blocks.extend([ResBlockSimple(channels*chdiv, dropout=dropout, kernel_size=5) for _ in range(resblks)])
|
|
||||||
levels.append(nn.Sequential(*blocks))
|
|
||||||
lastdiv = chdiv
|
|
||||||
self.up_levels = nn.ModuleList(levels)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
h = x
|
|
||||||
for level in self.down_levels:
|
|
||||||
h = level(h)
|
|
||||||
|
|
||||||
for k, level in enumerate(self.up_levels):
|
|
||||||
h = level(h)
|
|
||||||
if k != len(self.up_levels)-1:
|
|
||||||
h = F.interpolate(h, scale_factor=4, mode='linear')
|
|
||||||
return h
|
|
||||||
|
|
||||||
|
|
||||||
class Diffusion(nn.Module):
|
|
||||||
"""
|
|
||||||
The full UNet model with attention and timestep embedding.
|
|
||||||
|
|
||||||
Customized to be conditioned on an aligned prior derived from a autoregressive
|
|
||||||
GPT-style model.
|
|
||||||
|
|
||||||
:param in_channels: channels in the input Tensor.
|
|
||||||
:param in_latent_channels: channels from the input latent.
|
|
||||||
:param model_channels: base channel count for the model.
|
|
||||||
:param out_channels: channels in the output Tensor.
|
|
||||||
:param num_res_blocks: number of residual blocks per downsample.
|
|
||||||
:param dropout: the dropout probability.
|
|
||||||
:param channel_mult: channel multiplier for each level of the UNet.
|
|
||||||
:param conv_resample: if True, use learned convolutions for upsampling and
|
|
||||||
downsampling.
|
|
||||||
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
|
||||||
:param resblock_updown: use residual blocks for up/downsampling.
|
|
||||||
:param use_new_attention_order: use a different attention pattern for potentially
|
|
||||||
increased efficiency.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
model_channels,
|
|
||||||
in_channels=1,
|
|
||||||
out_channels=2, # mean and variance
|
|
||||||
dropout=0,
|
|
||||||
# res 1, 2, 4, 8,16,32,64,128,256,512, 1K, 2K
|
|
||||||
channel_mult= (1,1.5,2, 3, 4, 6, 8, 12, 16, 24, 32, 48),
|
|
||||||
num_res_blocks=(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2),
|
|
||||||
# spec_cond: 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0)
|
|
||||||
# attn: 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1
|
|
||||||
conv_resample=True,
|
|
||||||
dims=1,
|
|
||||||
use_fp16=False,
|
|
||||||
kernel_size=3,
|
|
||||||
scale_factor=2,
|
|
||||||
time_embed_dim_multiplier=4,
|
|
||||||
efficient_convs=True, # Uses kernels with width of 1 in several places rather than 3.
|
|
||||||
use_scale_shift_norm=True,
|
|
||||||
freeze_main=False,
|
|
||||||
# Parameters for regularization.
|
|
||||||
unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training.
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
self.in_channels = in_channels
|
|
||||||
self.model_channels = model_channels
|
|
||||||
self.out_channels = out_channels
|
|
||||||
self.dropout = dropout
|
|
||||||
self.channel_mult = channel_mult
|
|
||||||
self.conv_resample = conv_resample
|
|
||||||
self.dims = dims
|
|
||||||
self.unconditioned_percentage = unconditioned_percentage
|
|
||||||
self.enable_fp16 = use_fp16
|
|
||||||
self.alignment_size = max(2 ** (len(channel_mult)+1), 256)
|
|
||||||
padding = 1 if kernel_size == 3 else 2
|
|
||||||
down_kernel = 1 if efficient_convs else 3
|
|
||||||
|
|
||||||
time_embed_dim = model_channels * time_embed_dim_multiplier
|
|
||||||
self.time_embed = nn.Sequential(
|
|
||||||
linear(model_channels, time_embed_dim),
|
|
||||||
nn.SiLU(),
|
|
||||||
linear(time_embed_dim, time_embed_dim),
|
|
||||||
)
|
|
||||||
|
|
||||||
self.structural_cond_input = nn.Conv1d(in_channels, model_channels, kernel_size=5, padding=2)
|
|
||||||
self.aligned_latent_padding_embedding = nn.Parameter(torch.zeros(1,in_channels,1))
|
|
||||||
self.unconditioned_embedding = nn.Parameter(torch.randn(1,model_channels,1))
|
|
||||||
self.structural_processor = AudioVAE(model_channels, dropout)
|
|
||||||
self.surrogate_head = nn.Conv1d(model_channels, in_channels, 1)
|
|
||||||
|
|
||||||
self.input_block = conv_nd(dims, in_channels, model_channels, kernel_size, padding=padding)
|
|
||||||
self.input_blocks = nn.ModuleList(
|
|
||||||
[
|
|
||||||
TimestepEmbedSequential(
|
|
||||||
conv_nd(dims, model_channels*2, model_channels, 1)
|
|
||||||
)
|
|
||||||
]
|
|
||||||
)
|
|
||||||
self._feature_size = model_channels
|
|
||||||
input_block_chans = [model_channels]
|
|
||||||
ch = model_channels
|
|
||||||
ds = 1
|
|
||||||
|
|
||||||
for level, (mult, num_blocks) in enumerate(zip(channel_mult, num_res_blocks)):
|
|
||||||
for _ in range(num_blocks):
|
|
||||||
layers = [
|
|
||||||
ResBlock(
|
|
||||||
ch,
|
|
||||||
time_embed_dim,
|
|
||||||
dropout,
|
|
||||||
out_channels=int(mult * model_channels),
|
|
||||||
dims=dims,
|
|
||||||
kernel_size=kernel_size,
|
|
||||||
efficient_config=efficient_convs,
|
|
||||||
use_scale_shift_norm=use_scale_shift_norm,
|
|
||||||
)
|
|
||||||
]
|
|
||||||
ch = int(mult * model_channels)
|
|
||||||
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
|
||||||
self._feature_size += ch
|
|
||||||
input_block_chans.append(ch)
|
|
||||||
if level != len(channel_mult) - 1:
|
|
||||||
out_ch = ch
|
|
||||||
self.input_blocks.append(
|
|
||||||
TimestepEmbedSequential(
|
|
||||||
Downsample(
|
|
||||||
ch, conv_resample, dims=dims, out_channels=out_ch, factor=scale_factor, ksize=down_kernel, pad=0 if down_kernel == 1 else 1
|
|
||||||
)
|
|
||||||
)
|
|
||||||
)
|
|
||||||
ch = out_ch
|
|
||||||
input_block_chans.append(ch)
|
|
||||||
ds *= 2
|
|
||||||
self._feature_size += ch
|
|
||||||
|
|
||||||
self.middle_block = TimestepEmbedSequential(
|
|
||||||
ResBlock(
|
|
||||||
ch,
|
|
||||||
time_embed_dim,
|
|
||||||
dropout,
|
|
||||||
dims=dims,
|
|
||||||
kernel_size=kernel_size,
|
|
||||||
efficient_config=efficient_convs,
|
|
||||||
use_scale_shift_norm=use_scale_shift_norm,
|
|
||||||
),
|
|
||||||
)
|
|
||||||
self._feature_size += ch
|
|
||||||
|
|
||||||
self.output_blocks = nn.ModuleList([])
|
|
||||||
for level, (mult, num_blocks) in list(enumerate(zip(channel_mult, num_res_blocks)))[::-1]:
|
|
||||||
for i in range(num_blocks + 1):
|
|
||||||
ich = input_block_chans.pop()
|
|
||||||
layers = [
|
|
||||||
ResBlock(
|
|
||||||
ch + ich,
|
|
||||||
time_embed_dim,
|
|
||||||
dropout,
|
|
||||||
out_channels=int(model_channels * mult),
|
|
||||||
dims=dims,
|
|
||||||
kernel_size=kernel_size,
|
|
||||||
efficient_config=efficient_convs,
|
|
||||||
use_scale_shift_norm=use_scale_shift_norm,
|
|
||||||
)
|
|
||||||
]
|
|
||||||
ch = int(model_channels * mult)
|
|
||||||
if level and i == num_blocks:
|
|
||||||
out_ch = ch
|
|
||||||
layers.append(
|
|
||||||
Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, factor=scale_factor)
|
|
||||||
)
|
|
||||||
ds //= 2
|
|
||||||
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
|
||||||
self._feature_size += ch
|
|
||||||
|
|
||||||
self.out = nn.Sequential(
|
|
||||||
normalization(ch),
|
|
||||||
nn.SiLU(),
|
|
||||||
zero_module(conv_nd(dims, model_channels, out_channels, kernel_size, padding=padding)),
|
|
||||||
)
|
|
||||||
|
|
||||||
if freeze_main:
|
|
||||||
for p in self.parameters():
|
|
||||||
p.DO_NOT_TRAIN = True
|
|
||||||
p.requires_grad = False
|
|
||||||
for m in [self.structural_processor, self.structural_cond_input, self.surrogate_head]:
|
|
||||||
for p in m.parameters():
|
|
||||||
del p.DO_NOT_TRAIN
|
|
||||||
p.requires_grad = True
|
|
||||||
|
|
||||||
|
|
||||||
def get_grad_norm_parameter_groups(self):
|
|
||||||
groups = {
|
|
||||||
'input_blocks': list(self.input_blocks.parameters()),
|
|
||||||
'output_blocks': list(self.output_blocks.parameters()),
|
|
||||||
'middle_transformer': list(self.middle_block.parameters()),
|
|
||||||
'structural_processor': list(self.structural_processor.parameters()),
|
|
||||||
}
|
|
||||||
return groups
|
|
||||||
|
|
||||||
def fix_alignment(self, x, aligned_conditioning):
|
|
||||||
"""
|
|
||||||
The UNet requires that the input <x> is a certain multiple of 2, defined by the UNet depth. Enforce this by
|
|
||||||
padding both <x> and <aligned_conditioning> before forward propagation and removing the padding before returning.
|
|
||||||
"""
|
|
||||||
cm = ceil_multiple(x.shape[-1], self.alignment_size)
|
|
||||||
if cm != 0:
|
|
||||||
pc = (cm-x.shape[-1])/x.shape[-1]
|
|
||||||
x = F.pad(x, (0,cm-x.shape[-1]))
|
|
||||||
aligned_conditioning = F.pad(aligned_conditioning, (0,int(pc*aligned_conditioning.shape[-1])))
|
|
||||||
return x, aligned_conditioning
|
|
||||||
|
|
||||||
def forward(self, x, timesteps, conditioning, return_surrogate=True, conditioning_free=False):
|
|
||||||
"""
|
|
||||||
Apply the model to an input batch.
|
|
||||||
|
|
||||||
:param x: an [N x C x ...] Tensor of inputs.
|
|
||||||
:param timesteps: a 1-D batch of timesteps.
|
|
||||||
:param conditioning: should just be the truth value. produces a latent through an autoencoder, then uses diffusion to decode that latent.
|
|
||||||
at inference, only the latent is passed in.
|
|
||||||
:param conditioning_free: When set, all conditioning inputs (including tokens and conditioning_input) will not be considered.
|
|
||||||
:return: an [N x C x ...] Tensor of outputs.
|
|
||||||
"""
|
|
||||||
|
|
||||||
# Fix input size to the proper multiple of 2 so we don't get alignment errors going down and back up the U-net.
|
|
||||||
orig_x_shape = x.shape[-1]
|
|
||||||
x, aligned_conditioning = self.fix_alignment(x, conditioning)
|
|
||||||
|
|
||||||
with autocast(x.device.type, enabled=self.enable_fp16):
|
|
||||||
|
|
||||||
# Note: this block does not need to repeated on inference, since it is not timestep-dependent.
|
|
||||||
if conditioning_free:
|
|
||||||
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, 1)
|
|
||||||
surrogate = torch.zeros_like(x)
|
|
||||||
else:
|
|
||||||
code_emb = self.structural_cond_input(aligned_conditioning)
|
|
||||||
code_emb = self.structural_processor(code_emb)
|
|
||||||
code_emb = F.interpolate(code_emb, size=(x.shape[-1],), mode='linear')
|
|
||||||
surrogate = self.surrogate_head(code_emb)
|
|
||||||
|
|
||||||
x = self.input_block(x)
|
|
||||||
x = torch.cat([x, code_emb], dim=1)
|
|
||||||
|
|
||||||
# Everything after this comment is timestep dependent.
|
|
||||||
hs = []
|
|
||||||
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
|
||||||
time_emb = time_emb.float()
|
|
||||||
h = x
|
|
||||||
for k, module in enumerate(self.input_blocks):
|
|
||||||
with autocast(x.device.type, enabled=self.enable_fp16 and not first):
|
|
||||||
# First block has autocast disabled to allow a high precision signal to be properly vectorized.
|
|
||||||
h = module(h, time_emb)
|
|
||||||
hs.append(h)
|
|
||||||
h = self.middle_block(h, time_emb)
|
|
||||||
for module in self.output_blocks:
|
|
||||||
h = torch.cat([h, hs.pop()], dim=1)
|
|
||||||
h = module(h, time_emb)
|
|
||||||
|
|
||||||
# Last block also has autocast disabled for high-precision outputs.
|
|
||||||
h = h.float()
|
|
||||||
out = self.out(h)
|
|
||||||
|
|
||||||
# Involve probabilistic or possibly unused parameters in loss so we don't get DDP errors.
|
|
||||||
extraneous_addition = 0
|
|
||||||
params = [self.aligned_latent_padding_embedding, self.unconditioned_embedding]
|
|
||||||
for p in params:
|
|
||||||
extraneous_addition = extraneous_addition + p.mean()
|
|
||||||
out = out + extraneous_addition * 0
|
|
||||||
|
|
||||||
if return_surrogate:
|
|
||||||
return out[:, :, :orig_x_shape], surrogate[:, :, :orig_x_shape]
|
|
||||||
else:
|
|
||||||
return out[:, :, :orig_x_shape]
|
|
||||||
|
|
||||||
|
|
||||||
@register_model
|
|
||||||
def register_unet_diffusion_waveform_gen2(opt_net, opt):
|
|
||||||
return Diffusion(**opt_net['kwargs'])
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
clip = torch.randn(2, 1, 32868)
|
|
||||||
aligned_sequence = torch.randn(2,1,32868)
|
|
||||||
ts = torch.LongTensor([600, 600])
|
|
||||||
model = Diffusion(128,
|
|
||||||
channel_mult=[1,1.5,2, 3, 4, 6, 8],
|
|
||||||
num_res_blocks=[2, 2, 2, 2, 2, 2, 1],
|
|
||||||
kernel_size=3,
|
|
||||||
scale_factor=2,
|
|
||||||
time_embed_dim_multiplier=4,
|
|
||||||
efficient_convs=False)
|
|
||||||
# Test with sequence aligned conditioning
|
|
||||||
o = model(clip, ts, aligned_sequence)
|
|
||||||
|
|
|
@ -1,480 +0,0 @@
|
||||||
import random
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
import torch.nn.functional as F
|
|
||||||
from torch import autocast
|
|
||||||
from x_transformers import Encoder
|
|
||||||
|
|
||||||
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
|
|
||||||
from models.diffusion.unet_diffusion import AttentionBlock, TimestepEmbedSequential, \
|
|
||||||
Downsample, Upsample, TimestepBlock
|
|
||||||
from models.audio.tts.mini_encoder import AudioMiniEncoder
|
|
||||||
from models.audio.tts.unet_diffusion_tts7 import CheckpointedXTransformerEncoder
|
|
||||||
from scripts.audio.gen.use_diffuse_tts import ceil_multiple
|
|
||||||
from trainer.networks import register_model
|
|
||||||
from utils.util import checkpoint
|
|
||||||
|
|
||||||
def is_sequence(t):
|
|
||||||
return t.dtype == torch.long
|
|
||||||
|
|
||||||
|
|
||||||
class ResBlock(TimestepBlock):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
channels,
|
|
||||||
emb_channels,
|
|
||||||
dropout,
|
|
||||||
out_channels=None,
|
|
||||||
dims=2,
|
|
||||||
kernel_size=3,
|
|
||||||
efficient_config=True,
|
|
||||||
use_scale_shift_norm=False,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.channels = channels
|
|
||||||
self.emb_channels = emb_channels
|
|
||||||
self.dropout = dropout
|
|
||||||
self.out_channels = out_channels or channels
|
|
||||||
self.use_scale_shift_norm = use_scale_shift_norm
|
|
||||||
padding = {1: 0, 3: 1, 5: 2}[kernel_size]
|
|
||||||
eff_kernel = 1 if efficient_config else 3
|
|
||||||
eff_padding = 0 if efficient_config else 1
|
|
||||||
|
|
||||||
self.in_layers = nn.Sequential(
|
|
||||||
normalization(channels),
|
|
||||||
nn.SiLU(),
|
|
||||||
conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding),
|
|
||||||
)
|
|
||||||
|
|
||||||
self.emb_layers = nn.Sequential(
|
|
||||||
nn.SiLU(),
|
|
||||||
linear(
|
|
||||||
emb_channels,
|
|
||||||
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
|
||||||
),
|
|
||||||
)
|
|
||||||
self.out_layers = nn.Sequential(
|
|
||||||
normalization(self.out_channels),
|
|
||||||
nn.SiLU(),
|
|
||||||
nn.Dropout(p=dropout),
|
|
||||||
zero_module(
|
|
||||||
conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding)
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
if self.out_channels == channels:
|
|
||||||
self.skip_connection = nn.Identity()
|
|
||||||
else:
|
|
||||||
self.skip_connection = conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding)
|
|
||||||
|
|
||||||
def forward(self, x, emb):
|
|
||||||
"""
|
|
||||||
Apply the block to a Tensor, conditioned on a timestep embedding.
|
|
||||||
|
|
||||||
:param x: an [N x C x ...] Tensor of features.
|
|
||||||
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
|
||||||
:return: an [N x C x ...] Tensor of outputs.
|
|
||||||
"""
|
|
||||||
return checkpoint(
|
|
||||||
self._forward, x, emb
|
|
||||||
)
|
|
||||||
|
|
||||||
def _forward(self, x, emb):
|
|
||||||
h = self.in_layers(x)
|
|
||||||
emb_out = self.emb_layers(emb).type(h.dtype)
|
|
||||||
while len(emb_out.shape) < len(h.shape):
|
|
||||||
emb_out = emb_out[..., None]
|
|
||||||
if self.use_scale_shift_norm:
|
|
||||||
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
|
||||||
scale, shift = torch.chunk(emb_out, 2, dim=1)
|
|
||||||
h = out_norm(h) * (1 + scale) + shift
|
|
||||||
h = out_rest(h)
|
|
||||||
else:
|
|
||||||
h = h + emb_out
|
|
||||||
h = self.out_layers(h)
|
|
||||||
return self.skip_connection(x) + h
|
|
||||||
|
|
||||||
|
|
||||||
class ResBlockSimple(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
channels,
|
|
||||||
dropout,
|
|
||||||
out_channels=None,
|
|
||||||
dims=1,
|
|
||||||
kernel_size=3,
|
|
||||||
efficient_config=True,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.channels = channels
|
|
||||||
self.dropout = dropout
|
|
||||||
self.out_channels = out_channels or channels
|
|
||||||
padding = {1: 0, 3: 1, 5: 2}[kernel_size]
|
|
||||||
eff_kernel = 1 if efficient_config else 3
|
|
||||||
eff_padding = 0 if efficient_config else 1
|
|
||||||
|
|
||||||
self.in_layers = nn.Sequential(
|
|
||||||
normalization(channels),
|
|
||||||
nn.SiLU(),
|
|
||||||
conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding),
|
|
||||||
)
|
|
||||||
self.out_layers = nn.Sequential(
|
|
||||||
normalization(self.out_channels),
|
|
||||||
nn.SiLU(),
|
|
||||||
nn.Dropout(p=dropout),
|
|
||||||
zero_module(
|
|
||||||
conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding)
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
if self.out_channels == channels:
|
|
||||||
self.skip_connection = nn.Identity()
|
|
||||||
else:
|
|
||||||
self.skip_connection = conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
return checkpoint(
|
|
||||||
self._forward, x
|
|
||||||
)
|
|
||||||
|
|
||||||
def _forward(self, x):
|
|
||||||
h = self.in_layers(x)
|
|
||||||
h = self.out_layers(h)
|
|
||||||
return self.skip_connection(x) + h
|
|
||||||
|
|
||||||
|
|
||||||
class DiffusionTts(nn.Module):
|
|
||||||
"""
|
|
||||||
The full UNet model with attention and timestep embedding.
|
|
||||||
|
|
||||||
Customized to be conditioned on an aligned prior derived from a autoregressive
|
|
||||||
GPT-style model.
|
|
||||||
|
|
||||||
:param in_channels: channels in the input Tensor.
|
|
||||||
:param in_latent_channels: channels from the input latent.
|
|
||||||
:param model_channels: base channel count for the model.
|
|
||||||
:param out_channels: channels in the output Tensor.
|
|
||||||
:param num_res_blocks: number of residual blocks per downsample.
|
|
||||||
:param attention_resolutions: a collection of downsample rates at which
|
|
||||||
attention will take place. May be a set, list, or tuple.
|
|
||||||
For example, if this contains 4, then at 4x downsampling, attention
|
|
||||||
will be used.
|
|
||||||
:param dropout: the dropout probability.
|
|
||||||
:param channel_mult: channel multiplier for each level of the UNet.
|
|
||||||
:param conv_resample: if True, use learned convolutions for upsampling and
|
|
||||||
downsampling.
|
|
||||||
:param dims: determines if the signal is 1D, 2D, or 3D.
|
|
||||||
:param num_heads: the number of attention heads in each attention layer.
|
|
||||||
:param num_heads_channels: if specified, ignore num_heads and instead use
|
|
||||||
a fixed channel width per attention head.
|
|
||||||
:param num_heads_upsample: works with num_heads to set a different number
|
|
||||||
of heads for upsampling. Deprecated.
|
|
||||||
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
|
||||||
:param resblock_updown: use residual blocks for up/downsampling.
|
|
||||||
:param use_new_attention_order: use a different attention pattern for potentially
|
|
||||||
increased efficiency.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
model_channels,
|
|
||||||
in_channels=1,
|
|
||||||
in_latent_channels=1024,
|
|
||||||
in_mel_channels=120,
|
|
||||||
conditioning_dim_factor=8,
|
|
||||||
conditioning_expansion=4,
|
|
||||||
out_channels=2, # mean and variance
|
|
||||||
dropout=0,
|
|
||||||
# res 1, 2, 4, 8,16,32,64,128,256,512, 1K, 2K
|
|
||||||
channel_mult= (1,1.5,2, 3, 4, 6, 8, 12, 16, 24, 32, 48),
|
|
||||||
num_res_blocks=(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2),
|
|
||||||
# spec_cond: 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0)
|
|
||||||
# attn: 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1
|
|
||||||
token_conditioning_resolutions=(1,16,),
|
|
||||||
conv_resample=True,
|
|
||||||
dims=1,
|
|
||||||
use_fp16=False,
|
|
||||||
num_heads=1,
|
|
||||||
num_head_channels=-1,
|
|
||||||
num_heads_upsample=-1,
|
|
||||||
kernel_size=3,
|
|
||||||
scale_factor=2,
|
|
||||||
time_embed_dim_multiplier=4,
|
|
||||||
efficient_convs=True, # Uses kernels with width of 1 in several places rather than 3.
|
|
||||||
use_scale_shift_norm=True,
|
|
||||||
# Parameters for regularization.
|
|
||||||
unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training.
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
if num_heads_upsample == -1:
|
|
||||||
num_heads_upsample = num_heads
|
|
||||||
|
|
||||||
self.in_channels = in_channels
|
|
||||||
self.model_channels = model_channels
|
|
||||||
self.out_channels = out_channels
|
|
||||||
self.dropout = dropout
|
|
||||||
self.channel_mult = channel_mult
|
|
||||||
self.conv_resample = conv_resample
|
|
||||||
self.num_heads = num_heads
|
|
||||||
self.num_head_channels = num_head_channels
|
|
||||||
self.num_heads_upsample = num_heads_upsample
|
|
||||||
self.dims = dims
|
|
||||||
self.unconditioned_percentage = unconditioned_percentage
|
|
||||||
self.enable_fp16 = use_fp16
|
|
||||||
self.alignment_size = 2 ** (len(channel_mult)+1)
|
|
||||||
self.in_mel_channels = in_mel_channels
|
|
||||||
padding = 1 if kernel_size == 3 else 2
|
|
||||||
down_kernel = 1 if efficient_convs else 3
|
|
||||||
|
|
||||||
time_embed_dim = model_channels * time_embed_dim_multiplier
|
|
||||||
self.time_embed = nn.Sequential(
|
|
||||||
linear(model_channels, time_embed_dim),
|
|
||||||
nn.SiLU(),
|
|
||||||
linear(time_embed_dim, time_embed_dim),
|
|
||||||
)
|
|
||||||
|
|
||||||
conditioning_dim = model_channels * conditioning_dim_factor
|
|
||||||
# Either code_converter or latent_converter is used, depending on what type of conditioning data is fed.
|
|
||||||
# This model is meant to be able to be trained on both for efficiency purposes - it is far less computationally
|
|
||||||
# complex to generate tokens, while generating latents will normally mean propagating through a deep autoregressive
|
|
||||||
# transformer network.
|
|
||||||
self.mel_converter = nn.Sequential(
|
|
||||||
nn.Conv1d(in_mel_channels, conditioning_dim, 3, padding=1),
|
|
||||||
ResBlockSimple(conditioning_dim, dropout, efficient_config=False),
|
|
||||||
ResBlockSimple(conditioning_dim, dropout, efficient_config=False),
|
|
||||||
ResBlockSimple(conditioning_dim, dropout, efficient_config=False),
|
|
||||||
ResBlockSimple(conditioning_dim, dropout, efficient_config=False),
|
|
||||||
ResBlockSimple(conditioning_dim, dropout, efficient_config=False)
|
|
||||||
)
|
|
||||||
self.latent_converter = nn.Conv1d(in_latent_channels, conditioning_dim, 1)
|
|
||||||
self.aligned_latent_padding_embedding = nn.Parameter(torch.randn(1,in_latent_channels,1))
|
|
||||||
self.unconditioned_embedding = nn.Parameter(torch.randn(1,conditioning_dim,1))
|
|
||||||
self.conditioning_expansion = conditioning_expansion
|
|
||||||
|
|
||||||
self.input_blocks = nn.ModuleList(
|
|
||||||
[
|
|
||||||
TimestepEmbedSequential(
|
|
||||||
conv_nd(dims, in_channels, model_channels, kernel_size, padding=padding)
|
|
||||||
)
|
|
||||||
]
|
|
||||||
)
|
|
||||||
token_conditioning_blocks = []
|
|
||||||
self._feature_size = model_channels
|
|
||||||
input_block_chans = [model_channels]
|
|
||||||
ch = model_channels
|
|
||||||
ds = 1
|
|
||||||
|
|
||||||
for level, (mult, num_blocks) in enumerate(zip(channel_mult, num_res_blocks)):
|
|
||||||
if ds in token_conditioning_resolutions:
|
|
||||||
token_conditioning_block = nn.Conv1d(conditioning_dim, ch, 1)
|
|
||||||
token_conditioning_block.weight.data *= .02
|
|
||||||
self.input_blocks.append(token_conditioning_block)
|
|
||||||
token_conditioning_blocks.append(token_conditioning_block)
|
|
||||||
|
|
||||||
for _ in range(num_blocks):
|
|
||||||
layers = [
|
|
||||||
ResBlock(
|
|
||||||
ch,
|
|
||||||
time_embed_dim,
|
|
||||||
dropout,
|
|
||||||
out_channels=int(mult * model_channels),
|
|
||||||
dims=dims,
|
|
||||||
kernel_size=kernel_size,
|
|
||||||
efficient_config=efficient_convs,
|
|
||||||
use_scale_shift_norm=use_scale_shift_norm,
|
|
||||||
)
|
|
||||||
]
|
|
||||||
ch = int(mult * model_channels)
|
|
||||||
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
|
||||||
self._feature_size += ch
|
|
||||||
input_block_chans.append(ch)
|
|
||||||
if level != len(channel_mult) - 1:
|
|
||||||
out_ch = ch
|
|
||||||
self.input_blocks.append(
|
|
||||||
TimestepEmbedSequential(
|
|
||||||
Downsample(
|
|
||||||
ch, conv_resample, dims=dims, out_channels=out_ch, factor=scale_factor, ksize=down_kernel, pad=0 if down_kernel == 1 else 1
|
|
||||||
)
|
|
||||||
)
|
|
||||||
)
|
|
||||||
ch = out_ch
|
|
||||||
input_block_chans.append(ch)
|
|
||||||
ds *= 2
|
|
||||||
self._feature_size += ch
|
|
||||||
|
|
||||||
self.middle_block = TimestepEmbedSequential(
|
|
||||||
ResBlock(
|
|
||||||
ch,
|
|
||||||
time_embed_dim,
|
|
||||||
dropout,
|
|
||||||
dims=dims,
|
|
||||||
kernel_size=kernel_size,
|
|
||||||
efficient_config=efficient_convs,
|
|
||||||
use_scale_shift_norm=use_scale_shift_norm,
|
|
||||||
),
|
|
||||||
ResBlock(
|
|
||||||
ch,
|
|
||||||
time_embed_dim,
|
|
||||||
dropout,
|
|
||||||
dims=dims,
|
|
||||||
kernel_size=kernel_size,
|
|
||||||
efficient_config=efficient_convs,
|
|
||||||
use_scale_shift_norm=use_scale_shift_norm,
|
|
||||||
),
|
|
||||||
)
|
|
||||||
self._feature_size += ch
|
|
||||||
|
|
||||||
self.output_blocks = nn.ModuleList([])
|
|
||||||
for level, (mult, num_blocks) in list(enumerate(zip(channel_mult, num_res_blocks)))[::-1]:
|
|
||||||
for i in range(num_blocks + 1):
|
|
||||||
ich = input_block_chans.pop()
|
|
||||||
layers = [
|
|
||||||
ResBlock(
|
|
||||||
ch + ich,
|
|
||||||
time_embed_dim,
|
|
||||||
dropout,
|
|
||||||
out_channels=int(model_channels * mult),
|
|
||||||
dims=dims,
|
|
||||||
kernel_size=kernel_size,
|
|
||||||
efficient_config=efficient_convs,
|
|
||||||
use_scale_shift_norm=use_scale_shift_norm,
|
|
||||||
)
|
|
||||||
]
|
|
||||||
ch = int(model_channels * mult)
|
|
||||||
if level and i == num_blocks:
|
|
||||||
out_ch = ch
|
|
||||||
layers.append(
|
|
||||||
Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, factor=scale_factor)
|
|
||||||
)
|
|
||||||
ds //= 2
|
|
||||||
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
|
||||||
self._feature_size += ch
|
|
||||||
|
|
||||||
self.out = nn.Sequential(
|
|
||||||
normalization(ch),
|
|
||||||
nn.SiLU(),
|
|
||||||
zero_module(conv_nd(dims, model_channels, out_channels, kernel_size, padding=padding)),
|
|
||||||
)
|
|
||||||
|
|
||||||
def get_grad_norm_parameter_groups(self):
|
|
||||||
groups = {
|
|
||||||
'input_blocks': list(self.input_blocks.parameters()),
|
|
||||||
'output_blocks': list(self.output_blocks.parameters()),
|
|
||||||
'middle_transformer': list(self.middle_block.parameters()),
|
|
||||||
}
|
|
||||||
return groups
|
|
||||||
|
|
||||||
def is_latent(self, t):
|
|
||||||
return t.shape[1] != self.in_mel_channels
|
|
||||||
|
|
||||||
def fix_alignment(self, x, aligned_conditioning):
|
|
||||||
"""
|
|
||||||
The UNet requires that the input <x> is a certain multiple of 2, defined by the UNet depth. Enforce this by
|
|
||||||
padding both <x> and <aligned_conditioning> before forward propagation and removing the padding before returning.
|
|
||||||
"""
|
|
||||||
cm = ceil_multiple(x.shape[-1], self.alignment_size)
|
|
||||||
if cm != 0:
|
|
||||||
pc = (cm-x.shape[-1])/x.shape[-1]
|
|
||||||
x = F.pad(x, (0,cm-x.shape[-1]))
|
|
||||||
# Also fix aligned_latent, which is aligned to x.
|
|
||||||
if self.is_latent(aligned_conditioning):
|
|
||||||
aligned_conditioning = torch.cat([aligned_conditioning,
|
|
||||||
self.aligned_latent_padding_embedding.repeat(x.shape[0], 1, int(pc * aligned_conditioning.shape[-1]))], dim=-1)
|
|
||||||
else:
|
|
||||||
aligned_conditioning = F.pad(aligned_conditioning, (0,int(pc*aligned_conditioning.shape[-1])))
|
|
||||||
return x, aligned_conditioning
|
|
||||||
|
|
||||||
def forward(self, x, timesteps, aligned_conditioning, conditioning_free=False):
|
|
||||||
"""
|
|
||||||
Apply the model to an input batch.
|
|
||||||
|
|
||||||
:param x: an [N x C x ...] Tensor of inputs.
|
|
||||||
:param timesteps: a 1-D batch of timesteps.
|
|
||||||
:param aligned_conditioning: an aligned latent or sequence of tokens providing useful data about the sample to be produced.
|
|
||||||
:param conditioning_free: When set, all conditioning inputs (including tokens and conditioning_input) will not be considered.
|
|
||||||
:return: an [N x C x ...] Tensor of outputs.
|
|
||||||
"""
|
|
||||||
|
|
||||||
# Shuffle aligned_latent to BxCxS format
|
|
||||||
if self.is_latent(aligned_conditioning):
|
|
||||||
aligned_conditioning = aligned_conditioning.permute(0, 2, 1)
|
|
||||||
|
|
||||||
# Fix input size to the proper multiple of 2 so we don't get alignment errors going down and back up the U-net.
|
|
||||||
orig_x_shape = x.shape[-1]
|
|
||||||
x, aligned_conditioning = self.fix_alignment(x, aligned_conditioning)
|
|
||||||
|
|
||||||
with autocast(x.device.type, enabled=self.enable_fp16):
|
|
||||||
|
|
||||||
hs = []
|
|
||||||
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
|
||||||
|
|
||||||
# Note: this block does not need to repeated on inference, since it is not timestep-dependent.
|
|
||||||
if conditioning_free:
|
|
||||||
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, 1)
|
|
||||||
else:
|
|
||||||
if self.is_latent(aligned_conditioning):
|
|
||||||
code_emb = self.latent_converter(aligned_conditioning)
|
|
||||||
else:
|
|
||||||
code_emb = self.mel_converter(aligned_conditioning)
|
|
||||||
|
|
||||||
# Everything after this comment is timestep dependent.
|
|
||||||
code_emb = torch.repeat_interleave(code_emb, self.conditioning_expansion, dim=-1)
|
|
||||||
|
|
||||||
first = True
|
|
||||||
time_emb = time_emb.float()
|
|
||||||
h = x
|
|
||||||
for k, module in enumerate(self.input_blocks):
|
|
||||||
if isinstance(module, nn.Conv1d):
|
|
||||||
h_tok = F.interpolate(module(code_emb), size=(h.shape[-1]), mode='nearest')
|
|
||||||
h = h + h_tok
|
|
||||||
else:
|
|
||||||
with autocast(x.device.type, enabled=self.enable_fp16 and not first):
|
|
||||||
# First block has autocast disabled to allow a high precision signal to be properly vectorized.
|
|
||||||
h = module(h, time_emb)
|
|
||||||
hs.append(h)
|
|
||||||
first = False
|
|
||||||
h = self.middle_block(h, time_emb)
|
|
||||||
for module in self.output_blocks:
|
|
||||||
h = torch.cat([h, hs.pop()], dim=1)
|
|
||||||
h = module(h, time_emb)
|
|
||||||
|
|
||||||
# Last block also has autocast disabled for high-precision outputs.
|
|
||||||
h = h.float()
|
|
||||||
out = self.out(h)
|
|
||||||
|
|
||||||
# Involve probabilistic or possibly unused parameters in loss so we don't get DDP errors.
|
|
||||||
extraneous_addition = 0
|
|
||||||
params = [self.aligned_latent_padding_embedding, self.unconditioned_embedding] + list(self.latent_converter.parameters())
|
|
||||||
for p in params:
|
|
||||||
extraneous_addition = extraneous_addition + p.mean()
|
|
||||||
out = out + extraneous_addition * 0
|
|
||||||
|
|
||||||
return out[:, :, :orig_x_shape]
|
|
||||||
|
|
||||||
|
|
||||||
@register_model
|
|
||||||
def register_unet_diffusion_waveform_gen3(opt_net, opt):
|
|
||||||
return DiffusionTts(**opt_net['kwargs'])
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
clip = torch.randn(2, 1, 32868)
|
|
||||||
aligned_latent = torch.randn(2,388,1024)
|
|
||||||
aligned_sequence = torch.randn(2,120,220)
|
|
||||||
ts = torch.LongTensor([600, 600])
|
|
||||||
model = DiffusionTts(128,
|
|
||||||
channel_mult=[1,1.5,2, 3, 4, 6, 8],
|
|
||||||
num_res_blocks=[2, 2, 2, 2, 2, 2, 1],
|
|
||||||
token_conditioning_resolutions=[1,4,16,64],
|
|
||||||
num_heads=8,
|
|
||||||
kernel_size=3,
|
|
||||||
scale_factor=2,
|
|
||||||
time_embed_dim_multiplier=4,
|
|
||||||
efficient_convs=False)
|
|
||||||
# Test with latent aligned conditioning
|
|
||||||
o = model(clip, ts, aligned_latent)
|
|
||||||
# Test with sequence aligned conditioning
|
|
||||||
o = model(clip, ts, aligned_sequence)
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user