Add ChainedGenWithStructure

This commit is contained in:
James Betker 2020-10-16 20:44:36 -06:00
parent 96f1be30ed
commit d856378b2e
4 changed files with 65 additions and 6 deletions

View File

@ -1,6 +1,7 @@
import torch
from torch import nn
from models.archs.SPSR_arch import ImageGradientNoPadding
from models.archs.arch_util import ConvGnLelu, ExpansionBlock2, ConvGnSilu, ConjoinBlock, MultiConvBlock, \
FinalUpsampleBlock2x
from models.archs.spinenet_arch import SpineNet
@ -49,11 +50,11 @@ class BasicEmbeddingPyramid(nn.Module):
class ChainedEmbeddingGen(nn.Module):
def __init__(self):
def __init__(self, depth=10):
super(ChainedEmbeddingGen, self).__init__()
self.initial_conv = ConvGnLelu(3, 64, kernel_size=7, bias=True, norm=False, activation=False)
self.spine = SpineNet(arch='49', output_level=[3, 4], double_reduce_early=False)
self.blocks = nn.ModuleList([BasicEmbeddingPyramid() for i in range(5)])
self.blocks = nn.ModuleList([BasicEmbeddingPyramid() for i in range(depth)])
self.upsample = FinalUpsampleBlock2x(64)
def forward(self, x):
@ -62,3 +63,56 @@ class ChainedEmbeddingGen(nn.Module):
for block in self.blocks:
fea = fea + checkpoint(block, fea, *emb)
return checkpoint(self.upsample, fea),
class ChainedEmbeddingGenWithStructure(nn.Module):
def __init__(self, depth=10):
super(ChainedEmbeddingGenWithStructure, self).__init__()
self.initial_conv = ConvGnLelu(3, 64, kernel_size=7, bias=True, norm=False, activation=False)
self.spine = SpineNet(arch='49', output_level=[3, 4], double_reduce_early=False)
self.blocks = nn.ModuleList([BasicEmbeddingPyramid() for i in range(depth)])
self.structure_joins = nn.ModuleList([ConjoinBlock(64) for i in range(3)])
self.structure_blocks = nn.ModuleList([ConvGnLelu(64, 64, kernel_size=3, bias=False, norm=False, activation=False, weight_init_factor=.1) for i in range(3)])
self.structure_upsample = FinalUpsampleBlock2x(64)
self.grad_extract = ImageGradientNoPadding()
self.upsample = FinalUpsampleBlock2x(64)
def forward(self, x):
emb = checkpoint(self.spine, x)
fea = self.initial_conv(x)
grad = fea
for i, block in enumerate(self.blocks):
fea = fea + checkpoint(block, fea, *emb)
if i < 3:
structure_br = checkpoint(self.structure_joins[i], grad, fea)
grad = grad + checkpoint(self.structure_blocks[i], structure_br)
out = checkpoint(self.upsample, fea)
return out, self.grad_extract(checkpoint(self.structure_upsample, grad)), self.grad_extract(out)
class ChainedEmbeddingGenWithStructureR2(nn.Module):
def __init__(self, depth=10):
super(ChainedEmbeddingGenWithStructureR2, self).__init__()
self.initial_conv = ConvGnLelu(3, 64, kernel_size=7, bias=True, norm=False, activation=False)
self.spine = SpineNet(arch='49', output_level=[3, 4], double_reduce_early=False)
self.blocks = nn.ModuleList([BasicEmbeddingPyramid() for i in range(depth)])
self.structure_joins = nn.ModuleList([ConjoinBlock(64) for i in range(3)])
self.structure_blocks = nn.ModuleList([ConvGnLelu(64, 64, kernel_size=3, bias=False, norm=False, activation=False, weight_init_factor=.1) for i in range(3)])
self.structure_upsample = FinalUpsampleBlock2x(64)
self.structure_rejoin = ConjoinBlock(64)
self.grad_extract = ImageGradientNoPadding()
self.upsample = FinalUpsampleBlock2x(64)
def forward(self, x):
emb = checkpoint(self.spine, x)
fea = self.initial_conv(x)
grad = fea
for i, block in enumerate(self.blocks):
fea = fea + checkpoint(block, fea, *emb)
if i < 3:
structure_br = checkpoint(self.structure_joins[i], grad, fea)
grad = grad + checkpoint(self.structure_blocks[i], structure_br)
if i == 3:
fea = fea + self.structure_rejoin(fea, grad)
out = checkpoint(self.upsample, fea)
return out, self.grad_extract(checkpoint(self.structure_upsample, grad)), self.grad_extract(out)

View File

@ -17,7 +17,8 @@ from collections import OrderedDict
import torchvision
import functools
from models.archs.ChainedEmbeddingGen import ChainedEmbeddingGen
from models.archs.ChainedEmbeddingGen import ChainedEmbeddingGen, ChainedEmbeddingGenWithStructure, \
ChainedEmbeddingGenWithStructureR2
logger = logging.getLogger('base')
@ -123,7 +124,11 @@ def define_G(opt, net_key='network_G', scale=None):
netG = SwitchedGen_arch.ArtistGen(opt_net['in_nc'], nf=opt_net['nf'], xforms=opt_net['num_transforms'], upscale=opt_net['scale'],
init_temperature=opt_net['temperature'])
elif which_model == 'chained_gen':
netG = ChainedEmbeddingGen()
netG = ChainedEmbeddingGen(depth=opt_net['depth'])
elif which_model == 'chained_gen_structured':
netG = ChainedEmbeddingGenWithStructure(depth=opt_net['depth'])
elif which_model == 'chained_gen_structuredr2':
netG = ChainedEmbeddingGenWithStructureR2(depth=opt_net['depth'])
elif which_model == "flownet2":
from models.flownet2.models import FlowNet2
ld = torch.load(opt_net['load_path'])

View File

@ -30,7 +30,7 @@ def init_dist(backend='nccl', **kwargs):
def main():
#### options
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_imgset_ssgsimpler.yml')
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_imgset_chained_structuredr2.yml')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()

View File

@ -30,7 +30,7 @@ def init_dist(backend='nccl', **kwargs):
def main():
#### options
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_imgset_ssgdeep.yml')
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_imgset_chained_structured.yml')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()