forked from mrq/DL-Art-School
Add SRG4
Back to the idea that maybe what we need is a hybrid approach between pure switches and RDB.
This commit is contained in:
parent
3320ad685f
commit
e6e91a1d75
|
@ -3,4 +3,5 @@
|
|||
<component name="JavaScriptSettings">
|
||||
<option name="languageLevel" value="ES6" />
|
||||
</component>
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.7 (torch-1.4-venv) (2)" project-jdk-type="Python SDK" />
|
||||
</project>
|
|
@ -5,7 +5,7 @@ import torch.nn.functional as F
|
|||
import functools
|
||||
from collections import OrderedDict
|
||||
from models.archs.arch_util import ConvBnLelu, ConvGnSilu, ExpansionBlock
|
||||
from models.archs.RRDBNet_arch import ResidualDenseBlock_5C
|
||||
from models.archs.RRDBNet_arch import ResidualDenseBlock_5C, RRDB
|
||||
from models.archs.spinenet_arch import SpineNet
|
||||
from switched_conv_util import save_attention_to_image
|
||||
|
||||
|
@ -117,7 +117,10 @@ class ConfigurableSwitchComputer(nn.Module):
|
|||
tc = transform_count
|
||||
self.multiplexer = multiplexer_net(tc)
|
||||
|
||||
if pre_transform_block:
|
||||
self.pre_transform = pre_transform_block()
|
||||
else:
|
||||
self.pre_transform = None
|
||||
self.transforms = nn.ModuleList([transform_block() for _ in range(transform_count)])
|
||||
self.add_noise = add_scalable_noise_to_transforms
|
||||
self.noise_scale = nn.Parameter(torch.full((1,), float(1e-3)))
|
||||
|
@ -237,6 +240,101 @@ class ConfigurableSwitchedResidualGenerator2(nn.Module):
|
|||
val["switch_%i_histogram" % (i,)] = hists[i]
|
||||
return val
|
||||
|
||||
|
||||
# Equivalent to SRG2 - Uses RDB blocks in between two switches.
|
||||
class ConfigurableSwitchedResidualGenerator4(nn.Module):
|
||||
def __init__(self, switch_filters, switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes,
|
||||
trans_layers, transformation_filters, attention_norm, initial_temp=20, final_temperature_step=50000, heightened_temp_min=1,
|
||||
heightened_final_step=50000, upsample_factor=1,
|
||||
add_scalable_noise_to_transforms=False):
|
||||
super(ConfigurableSwitchedResidualGenerator4, self).__init__()
|
||||
self.initial_conv = ConvBnLelu(3, transformation_filters, norm=False, activation=False, bias=True)
|
||||
self.upconv1 = ConvBnLelu(transformation_filters, transformation_filters, norm=False, bias=True)
|
||||
self.upconv2 = ConvBnLelu(transformation_filters, transformation_filters, norm=False, bias=True)
|
||||
self.hr_conv = ConvBnLelu(transformation_filters, transformation_filters, norm=False, bias=True)
|
||||
|
||||
multiplx_fn = functools.partial(ConvBasisMultiplexer, transformation_filters, switch_filters, switch_reductions,
|
||||
switch_processing_layers, trans_counts)
|
||||
transform_fn = functools.partial(MultiConvBlock, transformation_filters, int(transformation_filters * 1.5),
|
||||
transformation_filters, kernel_size=trans_kernel_sizes, depth=trans_layers,
|
||||
weight_init_factor=.1)
|
||||
self.rdb1 = RRDB(transformation_filters)
|
||||
self.sw1 = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||
pre_transform_block=None, transform_block=transform_fn,
|
||||
attention_norm=attention_norm,
|
||||
transform_count=trans_counts, init_temp=initial_temp,
|
||||
add_scalable_noise_to_transforms=add_scalable_noise_to_transforms)
|
||||
self.rdb2 = RRDB(transformation_filters)
|
||||
self.sw1 = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||
pre_transform_block=None, transform_block=transform_fn,
|
||||
attention_norm=attention_norm,
|
||||
transform_count=trans_counts, init_temp=initial_temp,
|
||||
add_scalable_noise_to_transforms=add_scalable_noise_to_transforms)
|
||||
self.rdb3 = RRDB(transformation_filters)
|
||||
|
||||
self.final_conv = ConvBnLelu(transformation_filters, 3, norm=False, activation=False, bias=True)
|
||||
self.transformation_counts = trans_counts
|
||||
self.init_temperature = initial_temp
|
||||
self.final_temperature_step = final_temperature_step
|
||||
self.heightened_temp_min = heightened_temp_min
|
||||
self.heightened_final_step = heightened_final_step
|
||||
self.attentions = None
|
||||
self.upsample_factor = upsample_factor
|
||||
assert self.upsample_factor == 2 or self.upsample_factor == 4
|
||||
|
||||
def forward(self, x):
|
||||
# This is a common bug when evaluating SRG2 generators. It needs to be configured properly in eval mode. Just fail.
|
||||
if not self.train:
|
||||
assert self.switches[0].switch.temperature == 1
|
||||
|
||||
x = self.initial_conv(x)
|
||||
|
||||
x = self.rdb1(x)
|
||||
x = self.sw1(x, True)
|
||||
x = self.rdb2(x)
|
||||
x = self.sw2(x, True)
|
||||
x = self.rdb3(x)
|
||||
|
||||
x = self.upconv1(F.interpolate(x, scale_factor=2, mode="nearest"))
|
||||
if self.upsample_factor > 2:
|
||||
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
||||
x = self.upconv2(x)
|
||||
x = self.final_conv(self.hr_conv(x))
|
||||
return x, x
|
||||
|
||||
def set_temperature(self, temp):
|
||||
[sw.set_temperature(temp) for sw in self.switches]
|
||||
|
||||
def update_for_step(self, step, experiments_path='.'):
|
||||
if self.attentions:
|
||||
temp = max(1,
|
||||
1 + self.init_temperature * (self.final_temperature_step - step) / self.final_temperature_step)
|
||||
if temp == 1 and self.heightened_final_step and step > self.final_temperature_step and \
|
||||
self.heightened_final_step != 1:
|
||||
# Once the temperature passes (1) it enters an inverted curve to match the linear curve from above.
|
||||
# without this, the attention specificity "spikes" incredibly fast in the last few iterations.
|
||||
h_steps_total = self.heightened_final_step - self.final_temperature_step
|
||||
h_steps_current = min(step - self.final_temperature_step, h_steps_total)
|
||||
# The "gap" will represent the steps that need to be traveled as a linear function.
|
||||
h_gap = 1 / self.heightened_temp_min
|
||||
temp = h_gap * h_steps_current / h_steps_total
|
||||
# Invert temperature to represent reality on this side of the curve
|
||||
temp = 1 / temp
|
||||
self.set_temperature(temp)
|
||||
if step % 50 == 0:
|
||||
[save_attention_to_image(experiments_path, self.attentions[i], self.transformation_counts, step, "a%i" % (i+1,), l_mult=10) for i in range(len(self.attentions))]
|
||||
|
||||
def get_debug_values(self, step):
|
||||
temp = self.switches[0].switch.temperature
|
||||
mean_hists = [compute_attention_specificity(att, 2) for att in self.attentions]
|
||||
means = [i[0] for i in mean_hists]
|
||||
hists = [i[1].clone().detach().cpu().flatten() for i in mean_hists]
|
||||
val = {"switch_temperature": temp}
|
||||
for i in range(len(means)):
|
||||
val["switch_%i_specificity" % (i,)] = means[i]
|
||||
val["switch_%i_histogram" % (i,)] = hists[i]
|
||||
return val
|
||||
|
||||
class Interpolate(nn.Module):
|
||||
def __init__(self, factor):
|
||||
super(Interpolate, self).__init__()
|
||||
|
|
|
@ -79,6 +79,15 @@ def define_G(opt, net_key='network_G'):
|
|||
initial_temp=opt_net['temperature'], final_temperature_step=opt_net['temperature_final_step'],
|
||||
heightened_temp_min=opt_net['heightened_temp_min'], heightened_final_step=opt_net['heightened_final_step'],
|
||||
upsample_factor=scale, add_scalable_noise_to_transforms=opt_net['add_noise'])
|
||||
elif which_model == "ConfigurableSwitchedResidualGenerator4":
|
||||
netG = SwitchedGen_arch.ConfigurableSwitchedResidualGenerator4(switch_filters=opt_net['switch_filters'],
|
||||
switch_reductions=opt_net['switch_reductions'],
|
||||
switch_processing_layers=opt_net['switch_processing_layers'], trans_counts=opt_net['trans_counts'],
|
||||
trans_kernel_sizes=opt_net['trans_kernel_sizes'], trans_layers=opt_net['trans_layers'],
|
||||
transformation_filters=opt_net['transformation_filters'], attention_norm=opt_net['attention_norm'],
|
||||
initial_temp=opt_net['temperature'], final_temperature_step=opt_net['temperature_final_step'],
|
||||
heightened_temp_min=opt_net['heightened_temp_min'], heightened_final_step=opt_net['heightened_final_step'],
|
||||
upsample_factor=scale, add_scalable_noise_to_transforms=opt_net['add_noise'])
|
||||
elif which_model == "ProgressiveSRG2":
|
||||
netG = psrg.GrowingSRGBase(progressive_step_schedule=opt_net['schedule'], switch_reductions=opt_net['reductions'],
|
||||
growth_fade_in_steps=opt_net['fade_in_steps'], switch_filters=opt_net['switch_filters'],
|
||||
|
|
Loading…
Reference in New Issue
Block a user