diff --git a/codes/models/gpt_voice/unified_voice.py b/codes/models/gpt_voice/unified_voice.py index ec447a3a..20254c8e 100644 --- a/codes/models/gpt_voice/unified_voice.py +++ b/codes/models/gpt_voice/unified_voice.py @@ -41,7 +41,7 @@ class UnifiedGptVoice(nn.Module): - Voice conditioned on text """ - def __init__(self, layers=8, model_dim=512, heads=8, max_symbols_per_phrase=120, max_mel_tokens=250, max_conditioning_inputs=3, + def __init__(self, layers=8, model_dim=512, heads=8, max_symbols_per_phrase=120, max_mel_tokens=250, max_total_tokens=370, max_conditioning_inputs=3, checkpointing=True, mel_length_compression=1024, max_conditioning_length=60, number_text_tokens=256, start_text_token=255, stop_text_token=0, number_mel_codes=8194, start_mel_token=8192, stop_mel_token=8193): @@ -56,12 +56,15 @@ class UnifiedGptVoice(nn.Module): self.max_mel_tokens = max_mel_tokens self.max_symbols_per_phrase = max_symbols_per_phrase + self.max_total_tokens = max_total_tokens self.model_dim = model_dim self.max_conditioning_inputs = max_conditioning_inputs self.mel_length_compression = mel_length_compression self.conditioning_encoder = ConditioningEncoder(80, model_dim, num_attn_heads=heads) self.text_embedding = nn.Embedding(self.number_text_tokens, model_dim) - seq_length = 2+self.max_symbols_per_phrase+self.max_conditioning_inputs+self.max_mel_tokens + self.text_pos_embedding = nn.Embedding(self.max_symbols_per_phrase + 1, model_dim) + self.mel_pos_embedding = nn.Embedding(self.max_mel_tokens + 1, model_dim) + seq_length = 2+self.max_total_tokens+self.max_conditioning_inputs self.gpt_config = GPT2Config(vocab_size=self.number_mel_codes, n_positions=seq_length, n_ctx=seq_length, @@ -145,9 +148,10 @@ class UnifiedGptVoice(nn.Module): speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input).unsqueeze(1) text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token) - text_emb = self.text_embedding(text_inputs) + text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(torch.arange(text_inputs.shape[1], device=text_inputs.device)) mel_inputs, mel_targets = self.build_aligned_inputs_and_targets(mel_inputs, self.start_mel_token, self.stop_mel_token) mel_emb = self.gpt.get_input_embeddings()(mel_inputs) + mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device)) if text_first: text_logits, mel_logits = self.get_logits(speech_conditioning_input, text_emb, self.text_head, mel_emb, self.mel_head, get_attns=return_attentions) else: @@ -168,7 +172,7 @@ class UnifiedGptVoice(nn.Module): speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input).unsqueeze(1) text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token) - text_emb = self.text_embedding(text_inputs) + text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(torch.arange(text_inputs.shape[1], device=text_inputs.device)) text_logits = self.get_logits(speech_conditioning_input, text_emb, self.text_head) loss_text = F.cross_entropy(text_logits, text_targets.long()) return loss_text.mean() @@ -183,17 +187,18 @@ class UnifiedGptVoice(nn.Module): mel_inputs, mel_targets = self.build_aligned_inputs_and_targets(mel_inputs, self.start_mel_token, self.stop_mel_token) mel_emb = self.gpt.get_input_embeddings()(mel_inputs) + mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device)) mel_logits = self.get_logits(speech_conditioning_input, mel_emb, self.mel_head) loss_mel = F.cross_entropy(mel_logits, mel_targets.long()) return loss_mel.mean() def inference_speech(self, speech_conditioning_input, text_inputs, **hf_generate_kwargs): if not hasattr(self, 'inference_model'): - self.inference_model = GPT2InferenceModel(self.gpt_config, self.gpt, None, self.final_norm, self.mel_head) + self.inference_model = GPT2InferenceModel(self.gpt_config, self.gpt, self.mel_pos_embedding, self.final_norm, self.mel_head) text_inputs = F.pad(text_inputs, (0, self.max_symbols_per_phrase - text_inputs.shape[1]), value=self.stop_text_token) text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token) - text_emb = self.text_embedding(text_inputs) + text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(torch.arange(text_inputs.shape[1], device=text_inputs.device)) # Randomly permute the conditioning spectrogram, to destroy any structure present. speech_conditioning_input = self.randomly_permute_conditioning_input(speech_conditioning_input)