from scipy.io import wavfile from spleeter.separator import Separator from tqdm import tqdm from data.util import find_audio_files import os.path as osp from spleeter.audio.adapter import AudioAdapter import numpy as np if __name__ == '__main__': src_dir = 'P:\\Audiobooks-Podcasts' #src_dir = 'E:\\audio\\books' output_dir = 'D:\\data\\audio\\misc-split' output_dir_lq = 'D:\\data\\audio\\misc-split-with-bg' output_dir_garbage = 'D:\\data\\audio\\misc-split-garbage' #output_dir = 'E:\\audio\\books-clips' clip_length = 5 # In seconds sparsity = .1 # Only this proportion of the total clips are extracted as wavs. output_sample_rate=22050 audio_loader = AudioAdapter.default() separator = Separator('spleeter:2stems') files = find_audio_files(src_dir, include_nonwav=True) for e, file in enumerate(tqdm(files)): if e < 1: continue file_basis = osp.relpath(file, src_dir)\ .replace('/', '_')\ .replace('\\', '_')\ .replace('.', '_')\ .replace(' ', '_')\ .replace('!', '_')\ .replace(',', '_') if len(file_basis) > 100: file_basis = file_basis[:100] try: wave, sample_rate = audio_loader.load(file, sample_rate=output_sample_rate) except: print(f"Error with {file}") continue #if len(wave.shape) < 2: # continue # Calculate how much data we need to extract for each clip. clip_sz = sample_rate * clip_length interval = int(sample_rate * (clip_length / sparsity)) i = 0 while (i+clip_sz) < wave.shape[0]: clip = wave[i:i+clip_sz] sep = separator.separate(clip) vocals = sep['vocals'] bg = sep['accompaniment'] vmax = np.abs(vocals).mean() bmax = np.abs(bg).mean() # Only output to the "good" sample dir if the ratio of background noise to vocal noise is high enough. ratio = vmax / (bmax+.0000001) if ratio >= 25: # These values were derived empirically od = output_dir os = clip elif ratio >= 1: od = output_dir_lq os = vocals else: od = output_dir_garbage os = vocals # Strip out channels. if len(os.shape) > 1: os = os[:, 0] # Just use the first channel. wavfile.write(osp.join(od, f'{e}_{file_basis}_{i}.wav'), output_sample_rate, os) i = i + interval