import torch import torch.nn as nn import torch.nn.functional as F from models.gpt_voice.lucidrains_gpt import Transformer from models.gpt_voice.min_gpt import GPT, GPTConfig from models.tacotron2.taco_utils import get_mask_from_lengths from models.tacotron2.text import symbols from trainer.networks import register_model class GptTts(nn.Module): MAX_SYMBOLS_PER_PHRASE = 200 NUMBER_SYMBOLS = len(symbols) NUMBER_TEXT_TOKENS = NUMBER_SYMBOLS + MAX_SYMBOLS_PER_PHRASE + 2 MEL_DICTIONARY_SIZE = 1024+3 MEL_START_TOKEN = MEL_DICTIONARY_SIZE-3 MEL_STOP_TOKEN = MEL_DICTIONARY_SIZE-2 def __init__(self): super().__init__() model_dim = 512 max_mel_frames = 900 * 3 // 8 # 900 is the max number of MEL frames. The VQVAE outputs 3/8 of the input mel as tokens. self.model_dim = model_dim self.max_mel_frames = max_mel_frames self.text_embedding = nn.Embedding(self.NUMBER_TEXT_TOKENS, model_dim) self.mel_embedding = nn.Embedding(self.MEL_DICTIONARY_SIZE, model_dim) self.text_pos_embedding = nn.Embedding(self.MAX_SYMBOLS_PER_PHRASE, model_dim) self.mel_pos_embedding = nn.Embedding(max_mel_frames, model_dim) #self.gpt = GPT(GPTConfig(1+self.MAX_SYMBOLS_PER_PHRASE+max_mel_frames, n_layer=8, n_embd=model_dim, n_head=8), do_pos_emb=False) self.gpt = Transformer(dim=model_dim, depth=8, seq_len=1+self.MAX_SYMBOLS_PER_PHRASE+max_mel_frames, heads=8) self.final_norm = nn.LayerNorm(model_dim) self.text_head = nn.Linear(model_dim, self.NUMBER_TEXT_TOKENS) self.mel_head = nn.Linear(model_dim, self.MEL_DICTIONARY_SIZE) def forward(self, text_inputs, text_lengths, mel_targets, output_lengths): text_emb = self.text_embedding(text_inputs) text_emb = text_emb + self.text_pos_embedding(torch.arange(text_inputs.shape[1], device=text_inputs.device)) mel_emb = self.mel_embedding(mel_targets) mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_targets.shape[1], device=mel_targets.device)) emb = torch.cat([text_emb, mel_emb], dim=1) enc = self.gpt(emb) # Compute logits for text and mel heads text_logits = self.final_norm(enc[:, :text_emb.shape[1]]) mel_logits = self.final_norm(enc[:, text_emb.shape[1]:]) text_logits = self.text_head(text_logits) mel_logits = self.mel_head(mel_logits) # Compute loss text_targets = text_inputs[:,1:] text_logits = text_logits.permute(0,2,1)[:,:,:-1] # The last element of the logits is unneeded because the input to the transformer contains a token for both text and mel. loss_text = F.cross_entropy(text_logits, text_targets, reduction='none') mel_targets = mel_targets[:,1:] mel_logits = mel_logits.permute(0,2,1)[:,:,:-1] loss_mel = F.cross_entropy(mel_logits, mel_targets, reduction='none') # Fix up mel_logits so it can go into a VAE decoder as well. mel_codes = torch.argmax(F.softmax(mel_logits, dim=1), dim=1) mel_pad_mask = ~get_mask_from_lengths(output_lengths-1, mel_targets.shape[1]) mel_codes = mel_codes * torch.ones_like(mel_codes).masked_fill_(mel_pad_mask, 0) mel_codes = mel_codes[:,:-1] # Strip off token too (or padding). The important part is that the output sequence length is identical to the VAE input. extra_mask = mel_codes < self.MEL_DICTIONARY_SIZE-3 # The VAE doesn't know about START/STOP/PAD mel_codes = mel_codes * extra_mask # This class also returns the mel_targets for validation purposes. Format those. mel_targets = mel_targets[:,:-1] mel_targets = mel_targets * (mel_targets < self.MEL_DICTIONARY_SIZE-3) return loss_text.mean(), loss_mel.mean(), mel_codes, mel_targets def inference(self, text_inputs): text_emb = self.text_embedding(text_inputs) text_emb = text_emb + self.text_pos_embedding(torch.arange(text_inputs.shape[1], device=text_inputs.device)) mel_seq = torch.full((text_emb.shape[0],1), fill_value=self.MEL_START_TOKEN, device=text_emb.device) stop_encountered = torch.zeros((text_emb.shape[0],), device=text_emb.device) while not torch.all(stop_encountered) and len(mel_seq) < self.max_mel_frames: mel_emb = self.mel_embedding(mel_seq) mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device)) emb = torch.cat([text_emb, mel_emb], dim=1) enc = self.gpt(emb) mel_logits = self.final_norm(enc[:, text_emb.shape[1]:]) mel_logits = self.mel_head(mel_logits) mel_codes = torch.argmax(F.softmax(mel_logits, dim=-1), dim=-1) mel_seq = torch.cat([mel_seq, mel_codes[:, -1].unsqueeze(1)], dim=1) stop_encountered = torch.logical_or(stop_encountered, mel_seq[:,-1] == self.MEL_STOP_TOKEN) if len(mel_seq) >= self.max_mel_frames: print("Warning! Encountered frame limit before a stop token. Output is likely wrong.") # Format mel_seq so that the DVAE can actually use it (it is a two-tiered DVAE) cleaned = [] for j in range(mel_seq.shape[0]): s = mel_seq[j][1:-1] # Strip out BOS and EOS tokens. gt = s >= 512 l = (len(s)) // 3 for i in reversed(range(l)): if gt[i]: l = i+1 break top = s[:l] top = top + (top < 512) * 512 bottom = s[l:l*3] bottom = bottom * (bottom < 512) combined = torch.cat([top,bottom], dim=0) assert not torch.any(combined < 0) combined = combined * (combined < 1024) cleaned.append(combined) return torch.stack(cleaned) @register_model def register_gpt_tts(opt_net, opt): return GptTts() if __name__ == '__main__': gpt = GptTts() l1, l2, i = gpt(torch.randint(high=24, size=(2,60)), torch.tensor([55,58]), torch.randint(high=512, size=(2,310)), torch.tensor([300,305])) print(i.shape) #o = gpt.infer(torch.randint(high=24, size=(2,60))) #print(o.shape)