forked from mrq/DL-Art-School
206 lines
8.8 KiB
Python
206 lines
8.8 KiB
Python
import functools
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import models.archs.arch_util as arch_util
|
|
import torchvision
|
|
|
|
|
|
class ResidualDenseBlock_5C(nn.Module):
|
|
def __init__(self, nf=64, gc=32, bias=True):
|
|
super(ResidualDenseBlock_5C, self).__init__()
|
|
# gc: growth channel, i.e. intermediate channels
|
|
self.conv1 = nn.Conv2d(nf, gc, 3, 1, 1, bias=bias)
|
|
self.conv2 = nn.Conv2d(nf + gc, gc, 3, 1, 1, bias=bias)
|
|
self.conv3 = nn.Conv2d(nf + 2 * gc, gc, 3, 1, 1, bias=bias)
|
|
self.conv4 = nn.Conv2d(nf + 3 * gc, gc, 3, 1, 1, bias=bias)
|
|
self.conv5 = nn.Conv2d(nf + 4 * gc, nf, 3, 1, 1, bias=bias)
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
|
|
# initialization
|
|
arch_util.initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5],
|
|
0.1)
|
|
|
|
def forward(self, x):
|
|
x1 = self.lrelu(self.conv1(x))
|
|
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
|
|
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
|
|
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
|
|
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
|
return x5 * 0.2 + x
|
|
|
|
# 5-channel residual block that uses attention in the convolutions.
|
|
class AttentiveResidualDenseBlock_5C(ResidualDenseBlock_5C):
|
|
def __init__(self, nf=64, gc=32, num_convs=8, init_temperature=1):
|
|
super(AttentiveResidualDenseBlock_5C, self).__init__()
|
|
# gc: growth channel, i.e. intermediate channels
|
|
self.conv1 = arch_util.DynamicConv2d(nf, gc, 3, 1, 1, num_convs=num_convs,
|
|
initial_temperature=init_temperature)
|
|
self.conv2 = arch_util.DynamicConv2d(nf + gc, gc, 3, 1, 1, num_convs=num_convs,
|
|
initial_temperature=init_temperature)
|
|
self.conv3 = arch_util.DynamicConv2d(nf + 2 * gc, gc, 3, 1, 1, num_convs=num_convs,
|
|
initial_temperature=init_temperature)
|
|
self.conv4 = arch_util.DynamicConv2d(nf + 3 * gc, gc, 3, 1, 1, num_convs=num_convs,
|
|
initial_temperature=init_temperature)
|
|
self.conv5 = arch_util.DynamicConv2d(nf + 4 * gc, nf, 3, 1, 1, num_convs=num_convs,
|
|
initial_temperature=init_temperature)
|
|
|
|
# initialization
|
|
arch_util.initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5],
|
|
0.1)
|
|
|
|
def set_temperature(self, temp):
|
|
self.conv1.set_attention_temperature(temp)
|
|
self.conv2.set_attention_temperature(temp)
|
|
self.conv3.set_attention_temperature(temp)
|
|
self.conv4.set_attention_temperature(temp)
|
|
self.conv5.set_attention_temperature(temp)
|
|
|
|
|
|
class RRDB(nn.Module):
|
|
'''Residual in Residual Dense Block'''
|
|
|
|
def __init__(self, nf, gc=32):
|
|
super(RRDB, self).__init__()
|
|
self.RDB1 = ResidualDenseBlock_5C(nf, gc)
|
|
self.RDB2 = ResidualDenseBlock_5C(nf, gc)
|
|
self.RDB3 = ResidualDenseBlock_5C(nf, gc)
|
|
|
|
def forward(self, x):
|
|
out = self.RDB1(x)
|
|
out = self.RDB2(out)
|
|
out = self.RDB3(out)
|
|
return out * 0.2 + x
|
|
|
|
class AttentiveRRDB(RRDB):
|
|
def __init__(self, nf, gc=32, num_convs=8, init_temperature=1):
|
|
super(RRDB, self).__init__()
|
|
self.RDB1 = AttentiveResidualDenseBlock_5C(nf, gc, num_convs, init_temperature)
|
|
self.RDB2 = AttentiveResidualDenseBlock_5C(nf, gc, num_convs, init_temperature)
|
|
self.RDB3 = AttentiveResidualDenseBlock_5C(nf, gc, num_convs, init_temperature)
|
|
|
|
def set_temperature(self, temp):
|
|
self.RDB1.set_temperature(temp)
|
|
self.RDB2.set_temperature(temp)
|
|
self.RDB3.set_temperature(temp)
|
|
|
|
class RRDBNet(nn.Module):
|
|
def __init__(self, in_nc, out_nc, nf, nb, gc=32, scale=2, initial_stride=1,
|
|
rrdb_block_f=None):
|
|
super(RRDBNet, self).__init__()
|
|
if rrdb_block_f is None:
|
|
rrdb_block_f = functools.partial(RRDB, nf=nf, gc=gc)
|
|
|
|
self.scale = scale
|
|
self.conv_first = nn.Conv2d(in_nc, nf, 7, initial_stride, padding=3, bias=True)
|
|
self.RRDB_trunk, self.rrdb_layers = arch_util.make_layer(rrdb_block_f, nb, True)
|
|
self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
|
|
|
#### upsampling
|
|
self.upconv1 = nn.Conv2d(nf, nf, 5, 1, padding=2, bias=True)
|
|
self.upconv2 = nn.Conv2d(nf, nf, 5, 1, padding=2, bias=True)
|
|
self.HRconv = nn.Conv2d(nf, nf, 5, 1, padding=2, bias=True)
|
|
self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True)
|
|
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
|
|
# Sets the softmax temperature of each RRDB layer. Only works if you are using attentive
|
|
# convolutions.
|
|
def set_temperature(self, temp):
|
|
for layer in self.rrdb_layers:
|
|
layer.set_temperature(temp)
|
|
|
|
def forward(self, x):
|
|
fea = self.conv_first(x)
|
|
trunk = self.trunk_conv(self.RRDB_trunk(fea))
|
|
fea = fea + trunk
|
|
|
|
if self.scale >= 2:
|
|
fea = F.interpolate(fea, scale_factor=2, mode='nearest')
|
|
fea = self.lrelu(self.upconv1(fea))
|
|
if self.scale >= 4:
|
|
fea = F.interpolate(fea, scale_factor=2, mode='nearest')
|
|
fea = self.lrelu(self.upconv2(fea))
|
|
out = self.conv_last(self.lrelu(self.HRconv(fea)))
|
|
|
|
return (out,)
|
|
|
|
# Variant of RRDBNet that is "assisted" by an external pretrained image classifier whose
|
|
# intermediate layers have been splayed out, pixel-shuffled, and fed back in.
|
|
class AssistedRRDBNet(nn.Module):
|
|
# in_nc=number of input channels.
|
|
# out_nc=number of output channels.
|
|
# nf=internal filter count
|
|
# nb=number of additional blocks after the assistance layers.
|
|
# gc=growth channel inside of residual blocks
|
|
# scale=the number of times the output is doubled in size.
|
|
# initial_stride=the stride on the first conv. can be used to downsample the image for processing.
|
|
def __init__(self, in_nc, out_nc, nf, nb, gc=32, scale=2, initial_stride=1):
|
|
super(AssistedRRDBNet, self).__init__()
|
|
self.scale = scale
|
|
self.conv_first = nn.Conv2d(in_nc, nf, 7, initial_stride, padding=3, bias=True)
|
|
|
|
# Set-up the assist-net, which should do feature extraction for us.
|
|
self.assistnet = torchvision.models.wide_resnet50_2(pretrained=True)
|
|
self.set_enable_assistnet_training(False)
|
|
assist_nf = [2, 4, 8, 16] # Fixed for resnet. Re-evaluate if using other networks.
|
|
self.assist1 = RRDB(nf + assist_nf[0], gc)
|
|
self.assist2 = RRDB(nf + sum(assist_nf[:2]), gc)
|
|
self.assist3 = RRDB(nf + sum(assist_nf[:3]), gc)
|
|
self.assist4 = RRDB(nf + sum(assist_nf), gc)
|
|
nf = nf + sum(assist_nf)
|
|
|
|
# After this, it's just a "standard" RRDB net.
|
|
RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc)
|
|
self.RRDB_trunk = arch_util.make_layer(RRDB_block_f, nb)
|
|
self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
|
#### upsampling
|
|
self.upconv1 = nn.Conv2d(nf, nf, 5, 1, padding=2, bias=True)
|
|
self.upconv2 = nn.Conv2d(nf, nf, 5, 1, padding=2, bias=True)
|
|
self.HRconv = nn.Conv2d(nf, nf, 5, 1, padding=2, bias=True)
|
|
self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True)
|
|
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
|
|
def set_enable_assistnet_training(self, en):
|
|
for p in self.assistnet.parameters():
|
|
p.requires_grad = en
|
|
|
|
def res_extract(self, x):
|
|
x = self.assistnet.conv1(x)
|
|
x = self.assistnet.bn1(x)
|
|
x = self.assistnet.relu(x)
|
|
x = self.assistnet.maxpool(x)
|
|
|
|
x = self.assistnet.layer1(x)
|
|
l1 = F.pixel_shuffle(x, 4)
|
|
x = self.assistnet.layer2(x)
|
|
l2 = F.pixel_shuffle(x, 8)
|
|
x = self.assistnet.layer3(x)
|
|
l3 = F.pixel_shuffle(x, 16)
|
|
x = self.assistnet.layer4(x)
|
|
l4 = F.pixel_shuffle(x, 32)
|
|
return l1, l2, l3, l4
|
|
|
|
def forward(self, x):
|
|
# Invoke the assistant net first.
|
|
l1, l2, l3, l4 = self.res_extract(x)
|
|
|
|
fea = self.conv_first(x)
|
|
fea = self.assist1(torch.cat([fea, l4], dim=1))
|
|
fea = self.assist2(torch.cat([fea, l3], dim=1))
|
|
fea = self.assist3(torch.cat([fea, l2], dim=1))
|
|
fea = self.assist4(torch.cat([fea, l1], dim=1))
|
|
|
|
trunk = self.trunk_conv(self.RRDB_trunk(fea))
|
|
fea = fea + trunk
|
|
|
|
if self.scale >= 2:
|
|
fea = F.interpolate(fea, scale_factor=2, mode='nearest')
|
|
fea = self.lrelu(self.upconv1(fea))
|
|
if self.scale >= 4:
|
|
fea = F.interpolate(fea, scale_factor=2, mode='nearest')
|
|
fea = self.lrelu(self.upconv2(fea))
|
|
out = self.conv_last(self.lrelu(self.HRconv(fea)))
|
|
|
|
return (out,) |