forked from mrq/DL-Art-School
33 lines
1.1 KiB
Python
33 lines
1.1 KiB
Python
import torch
|
|
import torch.nn.functional as F
|
|
|
|
from models.spleeter.estimator import Estimator
|
|
|
|
|
|
class Separator:
|
|
def __init__(self, model_path, input_sr=44100, device='cuda'):
|
|
self.model = Estimator(2, model_path).to(device)
|
|
self.device = device
|
|
self.input_sr = input_sr
|
|
|
|
def separate(self, npwav, normalize=False):
|
|
if not isinstance(npwav, torch.Tensor):
|
|
assert len(npwav.shape) == 1
|
|
wav = torch.tensor(npwav, device=self.device)
|
|
wav = wav.view(1,-1)
|
|
else:
|
|
assert len(npwav.shape) == 2 # Input should be BxL
|
|
wav = npwav.to(self.device)
|
|
|
|
if normalize:
|
|
wav = wav / (wav.max() + 1e-8)
|
|
|
|
# Spleeter expects audio input to be 44.1kHz.
|
|
wav = F.interpolate(wav.unsqueeze(1), mode='nearest', scale_factor=44100/self.input_sr).squeeze(1)
|
|
res = self.model.separate(wav)
|
|
res = [F.interpolate(r.unsqueeze(1), mode='nearest', scale_factor=self.input_sr/44100)[:,0] for r in res]
|
|
return {
|
|
'vocals': res[0].cpu().numpy(),
|
|
'accompaniment': res[1].cpu().numpy()
|
|
}
|