forked from mrq/DL-Art-School
57 lines
2.6 KiB
Python
57 lines
2.6 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from models.arch_util import ResBlock, AttentionBlock
|
|
from models.audio.music.flat_diffusion import MultiGroupEmbedding
|
|
from trainer.networks import register_model
|
|
from utils.util import checkpoint
|
|
|
|
|
|
class Code2Mel(nn.Module):
|
|
def __init__(self, out_dim=256, base_dim=1024, num_tokens=16, num_groups=4, dropout=.1):
|
|
super().__init__()
|
|
self.emb = MultiGroupEmbedding(num_tokens, num_groups, base_dim)
|
|
self.base_blocks = nn.Sequential(ResBlock(base_dim, dropout, dims=1),
|
|
AttentionBlock(base_dim, num_heads=base_dim//64),
|
|
ResBlock(base_dim, dropout, dims=1))
|
|
l2dim = base_dim-256
|
|
self.l2_up_block = nn.Conv1d(base_dim, l2dim, kernel_size=5, padding=2)
|
|
self.l2_blocks = nn.Sequential(ResBlock(l2dim, dropout, kernel_size=5, dims=1),
|
|
AttentionBlock(l2dim, num_heads=base_dim//64),
|
|
ResBlock(l2dim, dropout, kernel_size=5, dims=1),
|
|
AttentionBlock(l2dim, num_heads=base_dim//64),
|
|
ResBlock(l2dim, dropout, dims=1),
|
|
ResBlock(l2dim, dropout, dims=1))
|
|
l3dim = l2dim-256
|
|
self.l3_up_block = nn.Conv1d(l2dim, l3dim, kernel_size=5, padding=2)
|
|
self.l3_blocks = nn.Sequential(ResBlock(l3dim, dropout, kernel_size=5, dims=1),
|
|
AttentionBlock(l3dim, num_heads=base_dim//64),
|
|
ResBlock(l3dim, dropout, kernel_size=5, dims=1),
|
|
ResBlock(l3dim, dropout, dims=1))
|
|
self.final_block = nn.Conv1d(l3dim, out_dim, kernel_size=3, padding=1)
|
|
|
|
def forward(self, codes, target):
|
|
with torch.autocast(codes.device.type):
|
|
h = self.emb(codes).permute(0,2,1)
|
|
h = checkpoint(self.base_blocks, h)
|
|
h = F.interpolate(h, scale_factor=2, mode='linear')
|
|
h = self.l2_up_block(h)
|
|
h = checkpoint(self.l2_blocks, h)
|
|
h = F.interpolate(h, size=target.shape[-1], mode='linear')
|
|
h = self.l3_up_block(h)
|
|
h = checkpoint(self.l3_blocks, h.float())
|
|
pred = self.final_block(h)
|
|
return F.mse_loss(pred, target), pred
|
|
|
|
|
|
@register_model
|
|
def register_code2mel(opt_net, opt):
|
|
return Code2Mel(**opt_net['kwargs'])
|
|
|
|
|
|
if __name__ == '__main__':
|
|
model = Code2Mel()
|
|
codes = torch.randint(0,16, (2,200,4))
|
|
target = torch.randn(2,256,804)
|
|
model(codes, target) |