forked from mrq/DL-Art-School
42 lines
1.3 KiB
Python
42 lines
1.3 KiB
Python
import numpy
|
|
import torch
|
|
from torch.utils.data import DataLoader
|
|
|
|
from data.torch_dataset import TorchDataset
|
|
from models.classifiers.cifar_resnet_branched import ResNet
|
|
from models.classifiers.cifar_resnet_branched import BasicBlock
|
|
|
|
if __name__ == '__main__':
|
|
dopt = {
|
|
'flip': True,
|
|
'crop_sz': None,
|
|
'dataset': 'cifar100',
|
|
'image_size': 32,
|
|
'normalize': False,
|
|
'kwargs': {
|
|
'root': 'E:\\4k6k\\datasets\\images\\cifar100',
|
|
'download': True
|
|
}
|
|
}
|
|
set = TorchDataset(dopt)
|
|
loader = DataLoader(set, num_workers=0, batch_size=32)
|
|
model = ResNet(BasicBlock, [2, 2, 2, 2])
|
|
model.load_state_dict(torch.load('C:\\Users\\jbetk\\Downloads\\cifar_hardw_10000.pth'))
|
|
model.eval()
|
|
|
|
bins = [[] for _ in range(8)]
|
|
for i, batch in enumerate(loader):
|
|
logits, selector = model(batch['hq'], coarse_label=None, return_selector=True)
|
|
for k, s in enumerate(selector):
|
|
for j, b in enumerate(s):
|
|
if b:
|
|
bins[j].append(batch['labels'][k].item())
|
|
if i > 10:
|
|
break
|
|
|
|
import matplotlib.pyplot as plt
|
|
fig, axs = plt.subplots(3,3)
|
|
for i in range(8):
|
|
axs[i%3, i//3].hist(numpy.asarray(bins[i]))
|
|
plt.show()
|
|
print('hi') |