forked from mrq/DL-Art-School
4b4d08bdec
Also compute fea loss for this.
123 lines
5.1 KiB
Python
123 lines
5.1 KiB
Python
from utils.loss_accumulator import LossAccumulator
|
|
from torch.nn import Module
|
|
import logging
|
|
from models.steps.losses import create_generator_loss
|
|
import torch
|
|
from apex import amp
|
|
from collections import OrderedDict
|
|
from .injectors import create_injector
|
|
|
|
logger = logging.getLogger('base')
|
|
|
|
|
|
# Defines the expected API for a single training step
|
|
class ConfigurableStep(Module):
|
|
|
|
def __init__(self, opt_step, env):
|
|
super(ConfigurableStep, self).__init__()
|
|
|
|
self.step_opt = opt_step
|
|
self.env = env
|
|
self.opt = env['opt']
|
|
self.gen_outputs = opt_step['generator_outputs']
|
|
self.loss_accumulator = LossAccumulator()
|
|
self.optimizers = None
|
|
|
|
self.injectors = []
|
|
if 'injectors' in self.step_opt.keys():
|
|
for inj_name, injector in self.step_opt['injectors'].items():
|
|
self.injectors.append(create_injector(injector, env))
|
|
|
|
losses = []
|
|
self.weights = {}
|
|
if 'losses' in self.step_opt.keys():
|
|
for loss_name, loss in self.step_opt['losses'].items():
|
|
losses.append((loss_name, create_generator_loss(loss, env)))
|
|
self.weights[loss_name] = loss['weight']
|
|
self.losses = OrderedDict(losses)
|
|
|
|
# Subclasses should override this to define individual optimizers. They should all go into self.optimizers.
|
|
# This default implementation defines a single optimizer for all Generator parameters.
|
|
# Must be called after networks are initialized and wrapped.
|
|
def define_optimizers(self):
|
|
self.training_net = self.env['generators'][self.step_opt['training']] \
|
|
if self.step_opt['training'] in self.env['generators'].keys() \
|
|
else self.env['discriminators'][self.step_opt['training']]
|
|
optim_params = []
|
|
for k, v in self.training_net.named_parameters(): # can optimize for a part of the model
|
|
if v.requires_grad:
|
|
optim_params.append(v)
|
|
else:
|
|
if self.env['rank'] <= 0:
|
|
logger.warning('Params [{:s}] will not optimize.'.format(k))
|
|
opt = torch.optim.Adam(optim_params, lr=self.step_opt['lr'],
|
|
weight_decay=self.step_opt['weight_decay'],
|
|
betas=(self.step_opt['beta1'], self.step_opt['beta2']))
|
|
self.optimizers = [opt]
|
|
|
|
# Returns all optimizers used in this step.
|
|
def get_optimizers(self):
|
|
assert self.optimizers is not None
|
|
return self.optimizers
|
|
|
|
# Returns optimizers which are opting in for default LR scheduling.
|
|
def get_optimizers_with_default_scheduler(self):
|
|
assert self.optimizers is not None
|
|
return self.optimizers
|
|
|
|
# Returns the names of the networks this step will train. Other networks will be frozen.
|
|
def get_networks_trained(self):
|
|
return [self.step_opt['training']]
|
|
|
|
# Performs all forward and backward passes for this step given an input state. All input states are lists of
|
|
# chunked tensors. Use grad_accum_step to dereference these steps. Should return a dict of tensors that later
|
|
# steps might use. These tensors are automatically detached and accumulated into chunks.
|
|
def do_forward_backward(self, state, grad_accum_step, amp_loss_id, backward=True):
|
|
new_state = {}
|
|
|
|
# Prepare a de-chunked state dict which will be used for the injectors & losses.
|
|
local_state = {}
|
|
for k, v in state.items():
|
|
local_state[k] = v[grad_accum_step]
|
|
local_state.update(new_state)
|
|
|
|
# Inject in any extra dependencies.
|
|
for inj in self.injectors:
|
|
injected = inj(local_state)
|
|
local_state.update(injected)
|
|
new_state.update(injected)
|
|
|
|
if backward:
|
|
# Finally, compute the losses.
|
|
total_loss = 0
|
|
for loss_name, loss in self.losses.items():
|
|
l = loss(self.training_net, local_state)
|
|
total_loss += l * self.weights[loss_name]
|
|
# Record metrics.
|
|
self.loss_accumulator.add_loss(loss_name, l)
|
|
for n, v in loss.extra_metrics():
|
|
self.loss_accumulator.add_loss("%s_%s" % (loss_name, n), v)
|
|
self.loss_accumulator.add_loss("%s_total" % (self.step_opt['training'],), total_loss)
|
|
# Scale the loss down by the accumulation factor.
|
|
total_loss = total_loss / self.env['mega_batch_factor']
|
|
|
|
# Get dem grads!
|
|
with amp.scale_loss(total_loss, self.optimizers, amp_loss_id) as scaled_loss:
|
|
scaled_loss.backward()
|
|
|
|
# Detach all state variables. Within the step, gradients can flow. Once these variables leave the step
|
|
# we must release the gradients.
|
|
for k, v in new_state.items():
|
|
if isinstance(v, torch.Tensor):
|
|
new_state[k] = v.detach()
|
|
return new_state
|
|
|
|
# Performs the optimizer step after all gradient accumulation is completed. Default implementation simply steps()
|
|
# all self.optimizers.
|
|
def do_step(self):
|
|
for opt in self.optimizers:
|
|
opt.step()
|
|
|
|
def get_metrics(self):
|
|
return self.loss_accumulator.as_dict()
|