forked from mrq/DL-Art-School
271 lines
11 KiB
Python
271 lines
11 KiB
Python
import os
|
|
import random
|
|
|
|
import audio2numpy
|
|
import numpy as np
|
|
import torch
|
|
import torch.utils.data
|
|
import torch.nn.functional as F
|
|
from tqdm import tqdm
|
|
|
|
import models.tacotron2.layers as layers
|
|
from models.tacotron2.taco_utils import load_wav_to_torch, load_filepaths_and_text
|
|
|
|
from models.tacotron2.text import text_to_sequence
|
|
from utils.util import opt_get
|
|
|
|
|
|
def load_mozilla_cv(filename):
|
|
with open(filename, encoding='utf-8') as f:
|
|
components = [line.strip().split('\t') for line in f][1:] # First line is the header
|
|
base = os.path.dirname(filename)
|
|
filepaths_and_text = [[os.path.join(base, f'clips/{component[1]}'), component[2]] for component in components]
|
|
return filepaths_and_text
|
|
|
|
|
|
class TextMelLoader(torch.utils.data.Dataset):
|
|
"""
|
|
1) loads audio,text pairs
|
|
2) normalizes text and converts them to sequences of one-hot vectors
|
|
3) computes mel-spectrograms from audio files.
|
|
"""
|
|
def __init__(self, hparams):
|
|
self.path = hparams['path']
|
|
if not isinstance(self.path, list):
|
|
self.path = [self.path]
|
|
|
|
fetcher_mode = opt_get(hparams, ['fetcher_mode'], 'lj')
|
|
if not isinstance(fetcher_mode, list):
|
|
fetcher_mode = [fetcher_mode]
|
|
assert len(self.path) == len(fetcher_mode)
|
|
|
|
self.audiopaths_and_text = []
|
|
for p, fm in zip(self.path, fetcher_mode):
|
|
if fm == 'lj' or fm == 'libritts':
|
|
fetcher_fn = load_filepaths_and_text
|
|
elif fm == 'mozilla_cv':
|
|
fetcher_fn = load_mozilla_cv
|
|
else:
|
|
raise NotImplementedError()
|
|
self.audiopaths_and_text.extend(fetcher_fn(p))
|
|
self.text_cleaners = hparams.text_cleaners
|
|
self.max_wav_value = hparams.max_wav_value
|
|
self.sampling_rate = hparams.sampling_rate
|
|
self.load_mel_from_disk = hparams.load_mel_from_disk
|
|
self.return_wavs = opt_get(hparams, ['return_wavs'], False)
|
|
self.input_sample_rate = opt_get(hparams, ['input_sample_rate'], self.sampling_rate)
|
|
assert not (self.load_mel_from_disk and self.return_wavs)
|
|
self.stft = layers.TacotronSTFT(
|
|
hparams.filter_length, hparams.hop_length, hparams.win_length,
|
|
hparams.n_mel_channels, hparams.sampling_rate, hparams.mel_fmin,
|
|
hparams.mel_fmax)
|
|
random.seed(hparams.seed)
|
|
random.shuffle(self.audiopaths_and_text)
|
|
self.max_mel_len = opt_get(hparams, ['max_mel_length'], None)
|
|
self.max_text_len = opt_get(hparams, ['max_text_length'], None)
|
|
# If needs_collate=False, all outputs will be aligned and padded at maximum length.
|
|
self.needs_collate = opt_get(hparams, ['needs_collate'], True)
|
|
if not self.needs_collate:
|
|
assert self.max_mel_len is not None and self.max_text_len is not None
|
|
|
|
def get_mel_text_pair(self, audiopath_and_text):
|
|
# separate filename and text
|
|
audiopath, text = audiopath_and_text[0], audiopath_and_text[1]
|
|
text_seq = self.get_text(text)
|
|
mel = self.get_mel(audiopath)
|
|
return (text_seq, mel, text, audiopath_and_text[0])
|
|
|
|
def get_mel(self, filename):
|
|
if not self.load_mel_from_disk:
|
|
if filename.endswith('.wav'):
|
|
audio, sampling_rate = load_wav_to_torch(filename)
|
|
audio = (audio / self.max_wav_value).clip(-1,1)
|
|
else:
|
|
audio, sampling_rate = audio2numpy.audio_from_file(filename)
|
|
audio = torch.tensor(audio)
|
|
audio = (audio.squeeze().clip(-1,1))
|
|
|
|
if sampling_rate != self.input_sample_rate:
|
|
if sampling_rate < self.input_sample_rate:
|
|
print(f'{filename} has a sample rate of {sampling_rate} which is lower than the requested sample rate of {self.input_sample_rate}. This is not a good idea.')
|
|
audio = torch.nn.functional.interpolate(audio.unsqueeze(0).unsqueeze(1), scale_factor=self.input_sample_rate/sampling_rate, mode='area', recompute_scale_factor=False)
|
|
if (audio.min() < -1).any() or (audio.max() > 1).any():
|
|
print(f"Error with audio ranging for {filename}; min={audio.min()} max={audio.max()}")
|
|
return None
|
|
audio_norm = audio.unsqueeze(0)
|
|
audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False)
|
|
if self.input_sample_rate != self.sampling_rate:
|
|
ratio = self.sampling_rate / self.input_sample_rate
|
|
audio_norm = torch.nn.functional.interpolate(audio_norm.unsqueeze(0), scale_factor=ratio, mode='area').squeeze(0)
|
|
if self.return_wavs:
|
|
melspec = audio_norm
|
|
else:
|
|
melspec = self.stft.mel_spectrogram(audio_norm)
|
|
melspec = torch.squeeze(melspec, 0)
|
|
else:
|
|
melspec = torch.from_numpy(np.load(filename))
|
|
assert melspec.size(0) == self.stft.n_mel_channels, (
|
|
'Mel dimension mismatch: given {}, expected {}'.format(melspec.size(0), self.stft.n_mel_channels))
|
|
|
|
|
|
return melspec
|
|
|
|
def get_text(self, text):
|
|
text_norm = torch.IntTensor(text_to_sequence(text, self.text_cleaners))
|
|
return text_norm
|
|
|
|
def __getitem__(self, index):
|
|
tseq, mel, text, path = self.get_mel_text_pair(self.audiopaths_and_text[index])
|
|
if mel is None or \
|
|
(self.max_mel_len is not None and mel.shape[-1] > self.max_mel_len) or \
|
|
(self.max_text_len is not None and tseq.shape[0] > self.max_text_len):
|
|
#if mel is not None:
|
|
# print(f"Exception {index} mel_len:{mel.shape[-1]} text_len:{tseq.shape[0]} fname: {path}")
|
|
# It's hard to handle this situation properly. Best bet is to return the a random valid token and skew the dataset somewhat as a result.
|
|
rv = random.randint(0,len(self)-1)
|
|
return self[rv]
|
|
orig_output = mel.shape[-1]
|
|
orig_text_len = tseq.shape[0]
|
|
if not self.needs_collate:
|
|
if mel.shape[-1] != self.max_mel_len:
|
|
mel = F.pad(mel, (0, self.max_mel_len - mel.shape[-1]))
|
|
if tseq.shape[0] != self.max_text_len:
|
|
tseq = F.pad(tseq, (0, self.max_text_len - tseq.shape[0]))
|
|
return {
|
|
'real_text': text,
|
|
'padded_text': tseq,
|
|
'input_lengths': torch.tensor(orig_text_len, dtype=torch.long),
|
|
'padded_mel': mel,
|
|
'output_lengths': torch.tensor(orig_output, dtype=torch.long),
|
|
'filenames': path
|
|
}
|
|
return tseq, mel, path, text
|
|
|
|
def __len__(self):
|
|
return len(self.audiopaths_and_text)
|
|
|
|
|
|
class TextMelCollate():
|
|
""" Zero-pads model inputs and targets based on number of frames per setep
|
|
"""
|
|
def __init__(self, n_frames_per_step):
|
|
self.n_frames_per_step = n_frames_per_step
|
|
|
|
def __call__(self, batch):
|
|
"""Collate's training batch from normalized text and mel-spectrogram
|
|
PARAMS
|
|
------
|
|
batch: [text_normalized, mel_normalized, filename]
|
|
"""
|
|
# Right zero-pad all one-hot text sequences to max input length
|
|
input_lengths, ids_sorted_decreasing = torch.sort(
|
|
torch.LongTensor([len(x[0]) for x in batch]),
|
|
dim=0, descending=True)
|
|
max_input_len = input_lengths[0]
|
|
|
|
text_padded = torch.LongTensor(len(batch), max_input_len)
|
|
text_padded.zero_()
|
|
filenames = []
|
|
real_text = []
|
|
for i in range(len(ids_sorted_decreasing)):
|
|
text = batch[ids_sorted_decreasing[i]][0]
|
|
text_padded[i, :text.size(0)] = text
|
|
filenames.append(batch[ids_sorted_decreasing[i]][2])
|
|
real_text.append(batch[ids_sorted_decreasing[i]][3])
|
|
|
|
# Right zero-pad mel-spec
|
|
num_mels = batch[0][1].size(0)
|
|
max_target_len = max([x[1].size(1) for x in batch])
|
|
if max_target_len % self.n_frames_per_step != 0:
|
|
max_target_len += self.n_frames_per_step - max_target_len % self.n_frames_per_step
|
|
assert max_target_len % self.n_frames_per_step == 0
|
|
|
|
# include mel padded and gate padded
|
|
mel_padded = torch.FloatTensor(len(batch), num_mels, max_target_len)
|
|
mel_padded.zero_()
|
|
gate_padded = torch.FloatTensor(len(batch), max_target_len)
|
|
gate_padded.zero_()
|
|
output_lengths = torch.LongTensor(len(batch))
|
|
for i in range(len(ids_sorted_decreasing)):
|
|
mel = batch[ids_sorted_decreasing[i]][1]
|
|
mel_padded[i, :, :mel.size(1)] = mel
|
|
gate_padded[i, mel.size(1)-1:] = 1
|
|
output_lengths[i] = mel.size(1)
|
|
|
|
return {
|
|
'padded_text': text_padded,
|
|
'input_lengths': input_lengths,
|
|
'padded_mel': mel_padded,
|
|
'padded_gate': gate_padded,
|
|
'output_lengths': output_lengths,
|
|
'filenames': filenames,
|
|
'real_text': real_text,
|
|
}
|
|
|
|
|
|
def save_mel_buffer_to_file(mel, path):
|
|
np.save(path, mel.numpy())
|
|
|
|
|
|
def load_mel_buffer_from_file(path):
|
|
return torch.tensor(np.load(path))
|
|
|
|
|
|
def dump_mels_to_disk():
|
|
params = {
|
|
'mode': 'nv_tacotron',
|
|
'path': ['E:\\audio\\MozillaCommonVoice\\en\\test.tsv', 'E:\\audio\\LibriTTS\\train-other-500_list.txt'],
|
|
'fetcher_mode': ['mozilla_cv', 'libritts'],
|
|
'phase': 'train',
|
|
'n_workers': 0,
|
|
'batch_size': 1,
|
|
'needs_collate': True,
|
|
'max_mel_length': 1000,
|
|
'max_text_length': 200,
|
|
#'return_wavs': True,
|
|
#'input_sample_rate': 22050,
|
|
#'sampling_rate': 8000
|
|
}
|
|
output_path = 'D:\\dlas\\results\\mozcv_mels'
|
|
os.makedirs(os.path.join(output_path, 'clips'), exist_ok=True)
|
|
from data import create_dataset, create_dataloader
|
|
ds, c = create_dataset(params, return_collate=True)
|
|
dl = create_dataloader(ds, params, collate_fn=c)
|
|
for i, b in tqdm(enumerate(dl)):
|
|
mels = b['padded_mel']
|
|
fnames = b['filenames']
|
|
for j, fname in enumerate(fnames):
|
|
save_mel_buffer_to_file(mels[j], f'{os.path.join(output_path, fname)}_mel.npy')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
dump_mels_to_disk()
|
|
'''
|
|
params = {
|
|
'mode': 'nv_tacotron',
|
|
'path': 'E:\\audio\\MozillaCommonVoice\\en\\train.tsv',
|
|
'phase': 'train',
|
|
'n_workers': 12,
|
|
'batch_size': 32,
|
|
'fetcher_mode': 'mozilla_cv',
|
|
'needs_collate': False,
|
|
'max_mel_length': 800,
|
|
'max_text_length': 200,
|
|
#'return_wavs': True,
|
|
#'input_sample_rate': 22050,
|
|
#'sampling_rate': 8000
|
|
}
|
|
from data import create_dataset, create_dataloader
|
|
|
|
ds, c = create_dataset(params, return_collate=True)
|
|
dl = create_dataloader(ds, params, collate_fn=c)
|
|
i = 0
|
|
m = None
|
|
for k in range(1000):
|
|
for i, b in tqdm(enumerate(dl)):
|
|
continue
|
|
pm = b['padded_mel']
|
|
pm = torch.nn.functional.pad(pm, (0, 800-pm.shape[-1]))
|
|
m = pm if m is None else torch.cat([m, pm], dim=0)
|
|
print(m.mean(), m.std())
|
|
''' |