forked from mrq/DL-Art-School
221 lines
7.3 KiB
Python
221 lines
7.3 KiB
Python
import torch.nn as nn
|
|
import math
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch.utils.checkpoint import checkpoint
|
|
|
|
from torch.autograd import Variable
|
|
|
|
def default_conv(in_channels, out_channels, kernel_size, bias=True):
|
|
return nn.Conv2d(
|
|
in_channels, out_channels, kernel_size,
|
|
padding=(kernel_size//2), bias=bias)
|
|
|
|
class MeanShift(nn.Conv2d):
|
|
def __init__(self, rgb_range, rgb_mean, rgb_std, sign=-1):
|
|
super(MeanShift, self).__init__(3, 3, kernel_size=1)
|
|
std = torch.Tensor(rgb_std)
|
|
self.weight.data = torch.eye(3).view(3, 3, 1, 1)
|
|
self.weight.data.div_(std.view(3, 1, 1, 1))
|
|
self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean)
|
|
self.bias.data.div_(std)
|
|
self.requires_grad = False
|
|
|
|
class BasicBlock(nn.Sequential):
|
|
def __init__(
|
|
self, in_channels, out_channels, kernel_size, stride=1, bias=False,
|
|
bn=True, act=nn.ReLU(True)):
|
|
|
|
m = [nn.Conv2d(
|
|
in_channels, out_channels, kernel_size,
|
|
padding=(kernel_size//2), stride=stride, bias=bias)
|
|
]
|
|
if bn: m.append(nn.BatchNorm2d(out_channels))
|
|
if act is not None: m.append(act)
|
|
super(BasicBlock, self).__init__(*m)
|
|
|
|
class ResBlock(nn.Module):
|
|
def __init__(
|
|
self, conv, n_feat, kernel_size,
|
|
bias=True, bn=False, act=nn.ReLU(True), res_scale=1):
|
|
|
|
super(ResBlock, self).__init__()
|
|
m = []
|
|
for i in range(2):
|
|
m.append(conv(n_feat, n_feat, kernel_size, bias=bias))
|
|
if bn: m.append(nn.BatchNorm2d(n_feat))
|
|
if i == 0: m.append(act)
|
|
|
|
self.body = nn.Sequential(*m)
|
|
self.res_scale = res_scale
|
|
|
|
def forward(self, x):
|
|
res = self.body(x).mul(self.res_scale)
|
|
res += x
|
|
|
|
return res
|
|
|
|
class Upsampler(nn.Sequential):
|
|
def __init__(self, conv, scale, n_feat, bn=False, act=False, bias=True):
|
|
|
|
m = []
|
|
if (scale & (scale - 1)) == 0: # Is scale = 2^n?
|
|
for _ in range(int(math.log(scale, 2))):
|
|
m.append(conv(n_feat, 4 * n_feat, 3, bias))
|
|
m.append(nn.PixelShuffle(2))
|
|
if bn: m.append(nn.BatchNorm2d(n_feat))
|
|
if act: m.append(act())
|
|
elif scale == 3:
|
|
m.append(conv(n_feat, 9 * n_feat, 3, bias))
|
|
m.append(nn.PixelShuffle(3))
|
|
if bn: m.append(nn.BatchNorm2d(n_feat))
|
|
if act: m.append(act())
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
super(Upsampler, self).__init__(*m)
|
|
|
|
def make_model(args, parent=False):
|
|
return RCAN(args)
|
|
|
|
|
|
## Channel Attention (CA) Layer
|
|
class CALayer(nn.Module):
|
|
def __init__(self, channel, reduction=16):
|
|
super(CALayer, self).__init__()
|
|
# global average pooling: feature --> point
|
|
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
|
# feature channel downscale and upscale --> channel weight
|
|
self.conv_du = nn.Sequential(
|
|
nn.Conv2d(channel, channel // reduction, 1, padding=0, bias=True),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv2d(channel // reduction, channel, 1, padding=0, bias=True),
|
|
nn.Sigmoid()
|
|
)
|
|
|
|
def forward(self, x):
|
|
y = self.avg_pool(x)
|
|
y = self.conv_du(y)
|
|
return x * y
|
|
|
|
|
|
## Residual Channel Attention Block (RCAB)
|
|
class RCAB(nn.Module):
|
|
def __init__(
|
|
self, conv, n_feat, kernel_size, reduction,
|
|
bias=True, bn=False, act=nn.ReLU(True), res_scale=1):
|
|
|
|
super(RCAB, self).__init__()
|
|
modules_body = []
|
|
for i in range(2):
|
|
modules_body.append(conv(n_feat, n_feat, kernel_size, bias=bias))
|
|
if bn: modules_body.append(nn.BatchNorm2d(n_feat))
|
|
if i == 0: modules_body.append(act)
|
|
modules_body.append(CALayer(n_feat, reduction))
|
|
self.body = nn.Sequential(*modules_body)
|
|
self.res_scale = res_scale
|
|
|
|
def forward(self, x):
|
|
res = self.body(x)
|
|
# res = self.body(x).mul(self.res_scale)
|
|
res += x
|
|
return res
|
|
|
|
|
|
## Residual Group (RG)
|
|
class ResidualGroup(nn.Module):
|
|
def __init__(self, conv, n_feat, kernel_size, reduction, act, res_scale, n_resblocks):
|
|
super(ResidualGroup, self).__init__()
|
|
modules_body = []
|
|
modules_body = [
|
|
RCAB(
|
|
conv, n_feat, kernel_size, reduction, bias=True, bn=False, act=nn.ReLU(True), res_scale=1) \
|
|
for _ in range(n_resblocks)]
|
|
modules_body.append(conv(n_feat, n_feat, kernel_size))
|
|
self.body = nn.Sequential(*modules_body)
|
|
|
|
def forward(self, x):
|
|
res = self.body(x)
|
|
res += x
|
|
return res
|
|
|
|
|
|
## Residual Channel Attention Network (RCAN)
|
|
class RCAN(nn.Module):
|
|
def __init__(self, args, conv=default_conv):
|
|
super(RCAN, self).__init__()
|
|
|
|
n_resgroups = args.n_resgroups
|
|
n_resblocks = args.n_resblocks
|
|
n_feats = args.n_feats
|
|
kernel_size = 3
|
|
reduction = args.reduction
|
|
scale = args.scale
|
|
act = nn.ReLU(True)
|
|
|
|
# RGB mean for DIV2K
|
|
rgb_mean = (0.4488, 0.4371, 0.4040)
|
|
rgb_std = (1.0, 1.0, 1.0)
|
|
self.sub_mean = MeanShift(args.rgb_range, rgb_mean, rgb_std)
|
|
|
|
# define head module
|
|
modules_head = [conv(args.n_colors, n_feats, kernel_size)]
|
|
|
|
# define body module
|
|
modules_body = [
|
|
ResidualGroup(
|
|
conv, n_feats, kernel_size, reduction, act=act, res_scale=args.res_scale, n_resblocks=n_resblocks) \
|
|
for _ in range(n_resgroups)]
|
|
|
|
modules_body.append(conv(n_feats, n_feats, kernel_size))
|
|
|
|
# define tail module
|
|
modules_tail = [
|
|
Upsampler(conv, scale, n_feats, act=False),
|
|
conv(n_feats, args.n_colors, kernel_size)]
|
|
|
|
self.add_mean = MeanShift(args.rgb_range, rgb_mean, rgb_std, 1)
|
|
|
|
self.head = nn.Sequential(*modules_head)
|
|
self.body = nn.Sequential(*modules_body)
|
|
self.tail = nn.Sequential(*modules_tail)
|
|
|
|
def forward(self, x):
|
|
x = self.sub_mean(x)
|
|
x = self.head(x)
|
|
|
|
res = self.body(x)
|
|
res += x
|
|
|
|
x = self.tail(res)
|
|
x = self.add_mean(x)
|
|
|
|
return x
|
|
|
|
def load_state_dict(self, state_dict, strict=False):
|
|
own_state = self.state_dict()
|
|
for name, param in state_dict.items():
|
|
if name in own_state:
|
|
if isinstance(param, nn.Parameter):
|
|
param = param.data
|
|
try:
|
|
own_state[name].copy_(param)
|
|
except Exception:
|
|
if name.find('tail') >= 0:
|
|
print('Replace pre-trained upsampler to new one...')
|
|
else:
|
|
raise RuntimeError('While copying the parameter named {}, '
|
|
'whose dimensions in the model are {} and '
|
|
'whose dimensions in the checkpoint are {}.'
|
|
.format(name, own_state[name].size(), param.size()))
|
|
elif strict:
|
|
if name.find('tail') == -1:
|
|
raise KeyError('unexpected key "{}" in state_dict'
|
|
.format(name))
|
|
|
|
if strict:
|
|
missing = set(own_state.keys()) - set(state_dict.keys())
|
|
if len(missing) > 0:
|
|
raise KeyError('missing keys in state_dict: "{}"'.format(missing)) |