forked from mrq/DL-Art-School
66 lines
2.5 KiB
Python
66 lines
2.5 KiB
Python
# Original source: https://github.com/SeanNaren/deepspeech.pytorch/blob/master/deepspeech_pytorch/loader/sparse_image_warp.py
|
|
# Removes the time_warp augmentation and only implements masking.
|
|
|
|
import numpy as np
|
|
import random
|
|
import torchvision.utils
|
|
|
|
from trainer.inject import Injector
|
|
from utils.util import opt_get
|
|
|
|
|
|
def spec_augment(mel_spectrogram, frequency_masking_para=27, time_masking_para=70, frequency_mask_num=1, time_mask_num=1):
|
|
|
|
v = mel_spectrogram.shape[1]
|
|
tau = mel_spectrogram.shape[2]
|
|
|
|
# Step 2 : Frequency masking
|
|
for i in range(frequency_mask_num):
|
|
f = np.random.uniform(low=0.0, high=frequency_masking_para)
|
|
f = int(f)
|
|
if v - f < 0:
|
|
continue
|
|
f0 = random.randint(0, v-f)
|
|
mel_spectrogram[:, f0:f0+f, :] = 0
|
|
|
|
# Step 3 : Time masking
|
|
for i in range(time_mask_num):
|
|
t = np.random.uniform(low=0.0, high=time_masking_para)
|
|
t = int(t)
|
|
if tau - t < 0:
|
|
continue
|
|
t0 = random.randint(0, tau-t)
|
|
mel_spectrogram[:, :, t0:t0+t] = 0
|
|
|
|
return mel_spectrogram
|
|
|
|
class MelMaskInjector(Injector):
|
|
def __init__(self, opt, env):
|
|
super().__init__(opt, env)
|
|
self.freq_mask_sz = opt_get(opt, ['frequency_mask_size_high'], 27)
|
|
self.n_freq_masks = opt_get(opt, ['frequency_mask_count'], 1)
|
|
self.time_mask_sz = opt_get(opt, ['time_mask_size_high'], 5)
|
|
self.n_time_masks = opt_get(opt, ['time_mask_count'], 3)
|
|
|
|
def forward(self, state):
|
|
h = state[self.input]
|
|
return {self.output: spec_augment(h, self.freq_mask_sz, self.time_mask_sz, self.n_freq_masks, self.n_time_masks)}
|
|
|
|
def visualization_spectrogram(spec, title):
|
|
# Turns spec into an image and outputs it to the filesystem.
|
|
spec = spec.unsqueeze(dim=1)
|
|
# Normalize so spectrogram is easier to view.
|
|
spec = (spec - spec.mean()) / spec.std()
|
|
spec = ((spec + 1) / 2).clip(0, 1)
|
|
torchvision.utils.save_image(spec, f'{title}.png')
|
|
|
|
if __name__ == '__main__':
|
|
from data.audio.unsupervised_audio_dataset import load_audio
|
|
from trainer.injectors.base_injectors import MelSpectrogramInjector
|
|
spec_maker = MelSpectrogramInjector({'in': 'audio', 'out': 'spec'}, {})
|
|
a = load_audio('D:\\data\\audio\\libritts\\test-clean\\61\\70970\\61_70970_000007_000001.wav', 22050).unsqueeze(0)
|
|
s = spec_maker({'audio': a})['spec']
|
|
visualization_spectrogram(s, 'original spec')
|
|
saug = spec_augment(s, 50, 5, 1, 3)
|
|
visualization_spectrogram(saug, 'modified spec')
|