forked from mrq/DL-Art-School
65 lines
2.0 KiB
Python
65 lines
2.0 KiB
Python
import PIL.Image
|
|
import zipfile
|
|
import torch
|
|
import torchvision
|
|
from torch.utils.data import DataLoader
|
|
from torchvision.transforms import Compose, ToTensor, Normalize, Resize
|
|
|
|
|
|
class ZipFileDataset(torch.utils.data.Dataset):
|
|
def __init__(self, opt):
|
|
self.path = opt['path']
|
|
zip = zipfile.ZipFile(self.path)
|
|
self.all_files = list(zip.namelist())
|
|
self.resolution = opt['resolution']
|
|
self.paired_mode = opt['paired_mode']
|
|
self.transforms = Compose([ToTensor(),
|
|
Resize(self.resolution),
|
|
Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
|
|
])
|
|
self.zip = None
|
|
|
|
def __len__(self):
|
|
return len(self.all_files)
|
|
|
|
# Loaded on the fly because ZipFile does not tolerate pickling.
|
|
def get_zip(self):
|
|
if self.zip is None:
|
|
self.zip = zipfile.ZipFile(self.path)
|
|
return self.zip
|
|
|
|
def load_image(self, path):
|
|
file = self.get_zip().open(path, 'r')
|
|
pilimg = PIL.Image.open(file)
|
|
tensor = self.transforms(pilimg)
|
|
return tensor
|
|
|
|
def __getitem__(self, i):
|
|
fname = self.all_files[i]
|
|
out = {
|
|
'hq': self.load_image(fname),
|
|
'HQ_path': fname,
|
|
'has_alt': self.paired_mode
|
|
}
|
|
if self.paired_mode:
|
|
if fname.endswith('0.jpg'):
|
|
aname = fname.replace('0.jpg', '1.jpg')
|
|
else:
|
|
aname = fname.replace('1.jpg', '0.jpg')
|
|
out['alt_hq'] = self.load_image(aname)
|
|
return out
|
|
|
|
if __name__ == '__main__':
|
|
opt = {
|
|
'path': 'E:\\4k6k\\datasets\\images\\youtube-imagenet-paired\\output.zip',
|
|
'resolution': 224,
|
|
'paired_mode': True
|
|
}
|
|
dataset = ZipFileDataset(opt)
|
|
print(len(dataset))
|
|
loader = DataLoader(dataset, shuffle=True)
|
|
for i, d in enumerate(loader):
|
|
torchvision.utils.save_image(d['hq'], f'{i}_hq.png')
|
|
torchvision.utils.save_image(d['alt_hq'], f'{i}_althq.png')
|
|
|