forked from mrq/DL-Art-School
312 lines
12 KiB
Python
312 lines
12 KiB
Python
from models.diffusion.fp16_util import convert_module_to_f32, convert_module_to_f16
|
|
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
|
|
from models.diffusion.unet_diffusion import AttentionPool2d, AttentionBlock, ResBlock, TimestepEmbedSequential, \
|
|
Downsample, Upsample
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from trainer.networks import register_model
|
|
|
|
|
|
class DiffusionVocoder(nn.Module):
|
|
"""
|
|
The full UNet model with attention and timestep embedding.
|
|
|
|
Customized to be conditioned on a spectrogram prior.
|
|
|
|
:param in_channels: channels in the input Tensor.
|
|
:param spectrogram_channels: channels in the conditioning spectrogram.
|
|
:param model_channels: base channel count for the model.
|
|
:param out_channels: channels in the output Tensor.
|
|
:param num_res_blocks: number of residual blocks per downsample.
|
|
:param attention_resolutions: a collection of downsample rates at which
|
|
attention will take place. May be a set, list, or tuple.
|
|
For example, if this contains 4, then at 4x downsampling, attention
|
|
will be used.
|
|
:param dropout: the dropout probability.
|
|
:param channel_mult: channel multiplier for each level of the UNet.
|
|
:param conv_resample: if True, use learned convolutions for upsampling and
|
|
downsampling.
|
|
:param dims: determines if the signal is 1D, 2D, or 3D.
|
|
:param num_heads: the number of attention heads in each attention layer.
|
|
:param num_heads_channels: if specified, ignore num_heads and instead use
|
|
a fixed channel width per attention head.
|
|
:param num_heads_upsample: works with num_heads to set a different number
|
|
of heads for upsampling. Deprecated.
|
|
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
|
:param resblock_updown: use residual blocks for up/downsampling.
|
|
:param use_new_attention_order: use a different attention pattern for potentially
|
|
increased efficiency.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model_channels,
|
|
num_res_blocks,
|
|
in_channels=1,
|
|
out_channels=2, # mean and variance
|
|
spectrogram_channels=80,
|
|
spectrogram_conditioning_level=3, # Level at which spectrogram conditioning is applied to the waveform.
|
|
dropout=0,
|
|
# 106496 -> 26624 -> 6656 -> 16664 -> 416 -> 104 -> 26 for ~5secs@22050Hz
|
|
channel_mult=(1, 2, 4, 8, 16, 32, 64),
|
|
attention_resolutions=(16,32,64),
|
|
conv_resample=True,
|
|
dims=1,
|
|
num_classes=None,
|
|
use_fp16=False,
|
|
num_heads=1,
|
|
num_head_channels=-1,
|
|
num_heads_upsample=-1,
|
|
use_scale_shift_norm=False,
|
|
resblock_updown=False,
|
|
use_new_attention_order=False,
|
|
kernel_size=5,
|
|
):
|
|
super().__init__()
|
|
|
|
if num_heads_upsample == -1:
|
|
num_heads_upsample = num_heads
|
|
|
|
self.in_channels = in_channels
|
|
self.spectrogram_channels = spectrogram_channels
|
|
self.model_channels = model_channels
|
|
self.out_channels = out_channels
|
|
self.num_res_blocks = num_res_blocks
|
|
self.attention_resolutions = attention_resolutions
|
|
self.dropout = dropout
|
|
self.channel_mult = channel_mult
|
|
self.conv_resample = conv_resample
|
|
self.dtype = torch.float16 if use_fp16 else torch.float32
|
|
self.num_heads = num_heads
|
|
self.num_head_channels = num_head_channels
|
|
self.num_heads_upsample = num_heads_upsample
|
|
self.dims = dims
|
|
|
|
padding = 1 if kernel_size == 3 else 2
|
|
|
|
time_embed_dim = model_channels * 4
|
|
self.time_embed = nn.Sequential(
|
|
linear(model_channels, time_embed_dim),
|
|
nn.SiLU(),
|
|
linear(time_embed_dim, time_embed_dim),
|
|
)
|
|
|
|
self.input_blocks = nn.ModuleList(
|
|
[
|
|
TimestepEmbedSequential(
|
|
conv_nd(dims, in_channels, model_channels, kernel_size, padding=padding)
|
|
)
|
|
]
|
|
)
|
|
self._feature_size = model_channels
|
|
input_block_chans = [model_channels]
|
|
ch = model_channels
|
|
ds = 1
|
|
|
|
spec_chs = channel_mult[spectrogram_conditioning_level] * model_channels
|
|
self.spectrogram_conditioner = nn.Sequential(
|
|
conv_nd(dims, self.spectrogram_channels, spec_chs, 1),
|
|
normalization(spec_chs),
|
|
nn.SiLU(),
|
|
conv_nd(dims, spec_chs, spec_chs, 1)
|
|
)
|
|
self.convergence_conv = nn.Sequential(
|
|
normalization(spec_chs*2),
|
|
nn.SiLU(),
|
|
conv_nd(dims, spec_chs*2, spec_chs*2, 1)
|
|
)
|
|
|
|
for level, mult in enumerate(channel_mult):
|
|
if level == spectrogram_conditioning_level+1:
|
|
ch *= 2 # At this level, the spectrogram is concatenated onto the input.
|
|
|
|
for _ in range(num_res_blocks):
|
|
layers = [
|
|
ResBlock(
|
|
ch,
|
|
time_embed_dim,
|
|
dropout,
|
|
out_channels=mult * model_channels,
|
|
dims=dims,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
kernel_size=kernel_size,
|
|
)
|
|
]
|
|
ch = mult * model_channels
|
|
if ds in attention_resolutions:
|
|
layers.append(
|
|
AttentionBlock(
|
|
ch,
|
|
num_heads=num_heads,
|
|
num_head_channels=num_head_channels,
|
|
use_new_attention_order=use_new_attention_order,
|
|
)
|
|
)
|
|
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
|
self._feature_size += ch
|
|
input_block_chans.append(ch)
|
|
if level != len(channel_mult) - 1:
|
|
out_ch = ch
|
|
self.input_blocks.append(
|
|
TimestepEmbedSequential(
|
|
ResBlock(
|
|
ch,
|
|
time_embed_dim,
|
|
dropout,
|
|
out_channels=out_ch,
|
|
dims=dims,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
down=True,
|
|
kernel_size=kernel_size,
|
|
)
|
|
if resblock_updown
|
|
else Downsample(
|
|
ch, conv_resample, dims=dims, out_channels=out_ch
|
|
)
|
|
)
|
|
)
|
|
ch = out_ch
|
|
input_block_chans.append(ch)
|
|
ds *= 2
|
|
self._feature_size += ch
|
|
if level == spectrogram_conditioning_level:
|
|
self.input_block_injection_point = len(self.input_blocks)-1
|
|
input_block_chans[-1] *= 2
|
|
|
|
self.middle_block = TimestepEmbedSequential(
|
|
ResBlock(
|
|
ch,
|
|
time_embed_dim,
|
|
dropout,
|
|
dims=dims,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
kernel_size=kernel_size,
|
|
),
|
|
AttentionBlock(
|
|
ch,
|
|
num_heads=num_heads,
|
|
num_head_channels=num_head_channels,
|
|
use_new_attention_order=use_new_attention_order,
|
|
),
|
|
ResBlock(
|
|
ch,
|
|
time_embed_dim,
|
|
dropout,
|
|
dims=dims,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
kernel_size=kernel_size,
|
|
),
|
|
)
|
|
self._feature_size += ch
|
|
|
|
self.output_blocks = nn.ModuleList([])
|
|
for level, mult in list(enumerate(channel_mult))[::-1]:
|
|
for i in range(num_res_blocks + 1):
|
|
ich = input_block_chans.pop()
|
|
layers = [
|
|
ResBlock(
|
|
ch + ich,
|
|
time_embed_dim,
|
|
dropout,
|
|
out_channels=model_channels * mult,
|
|
dims=dims,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
kernel_size=kernel_size,
|
|
)
|
|
]
|
|
ch = model_channels * mult
|
|
if ds in attention_resolutions:
|
|
layers.append(
|
|
AttentionBlock(
|
|
ch,
|
|
num_heads=num_heads_upsample,
|
|
num_head_channels=num_head_channels,
|
|
use_new_attention_order=use_new_attention_order,
|
|
)
|
|
)
|
|
if level and i == num_res_blocks:
|
|
out_ch = ch
|
|
layers.append(
|
|
ResBlock(
|
|
ch,
|
|
time_embed_dim,
|
|
dropout,
|
|
out_channels=out_ch,
|
|
dims=dims,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
up=True,
|
|
kernel_size=kernel_size,
|
|
)
|
|
if resblock_updown
|
|
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
|
)
|
|
ds //= 2
|
|
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
|
self._feature_size += ch
|
|
|
|
self.out = nn.Sequential(
|
|
normalization(ch),
|
|
nn.SiLU(),
|
|
zero_module(conv_nd(dims, model_channels, out_channels, kernel_size, padding=padding)),
|
|
)
|
|
|
|
def convert_to_fp16(self):
|
|
"""
|
|
Convert the torso of the model to float16.
|
|
"""
|
|
self.input_blocks.apply(convert_module_to_f16)
|
|
self.middle_block.apply(convert_module_to_f16)
|
|
self.output_blocks.apply(convert_module_to_f16)
|
|
|
|
def convert_to_fp32(self):
|
|
"""
|
|
Convert the torso of the model to float32.
|
|
"""
|
|
self.input_blocks.apply(convert_module_to_f32)
|
|
self.middle_block.apply(convert_module_to_f32)
|
|
self.output_blocks.apply(convert_module_to_f32)
|
|
|
|
def forward(self, x, timesteps, spectrogram):
|
|
"""
|
|
Apply the model to an input batch.
|
|
|
|
:param x: an [N x C x ...] Tensor of inputs.
|
|
:param timesteps: a 1-D batch of timesteps.
|
|
:param y: an [N] Tensor of labels, if class-conditional.
|
|
:return: an [N x C x ...] Tensor of outputs.
|
|
"""
|
|
assert x.shape[-1] % 4096 == 0 # This model operates at base//4096 at it's bottom levels, thus this requirement.
|
|
hs = []
|
|
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
|
conditioning = self.spectrogram_conditioner(spectrogram)
|
|
|
|
h = x.type(self.dtype)
|
|
for k, module in enumerate(self.input_blocks):
|
|
h = module(h, emb)
|
|
if k == self.input_block_injection_point:
|
|
cond = nn.functional.interpolate(conditioning, size=h.shape[-self.dims:], mode='nearest')
|
|
h = torch.cat([h, cond], dim=1)
|
|
h = self.convergence_conv(h)
|
|
hs.append(h)
|
|
h = self.middle_block(h, emb)
|
|
for module in self.output_blocks:
|
|
h = torch.cat([h, hs.pop()], dim=1)
|
|
h = module(h, emb)
|
|
h = h.type(x.dtype)
|
|
return self.out(h)
|
|
|
|
|
|
@register_model
|
|
def register_unet_diffusion_vocoder(opt_net, opt):
|
|
return DiffusionVocoder(**opt_net['kwargs'])
|
|
|
|
|
|
# Test for ~4 second audio clip at 22050Hz
|
|
if __name__ == '__main__':
|
|
clip = torch.randn(1, 1, 81920)
|
|
spec = torch.randn(1, 80, 416)
|
|
ts = torch.LongTensor([555])
|
|
model = DiffusionVocoder(16, 2)
|
|
print(model(clip, ts, spec).shape)
|