forked from mrq/DL-Art-School
232 lines
8.2 KiB
Python
232 lines
8.2 KiB
Python
from functools import partial
|
|
from itertools import islice, cycle
|
|
|
|
import torch
|
|
from torch import nn, einsum
|
|
import torch.nn.functional as F
|
|
from einops import rearrange
|
|
|
|
from models.lucidrains.dalle.reversible import ReversibleSequence, SequentialSequence
|
|
from models.lucidrains.dalle.attention import Attention, SparseAttention, SparseConvCausalAttention, SparseAxialCausalAttention
|
|
|
|
from rotary_embedding_torch import RotaryEmbedding, broadcat
|
|
from g_mlp_pytorch import gMLPBlock
|
|
|
|
# helpers
|
|
|
|
def exists(val):
|
|
return val is not None
|
|
|
|
def default(val, d):
|
|
return val if exists(val) else d
|
|
|
|
def cast_tuple(val, depth = 1):
|
|
if isinstance(val, list):
|
|
val = tuple(val)
|
|
return val if isinstance(val, tuple) else (val,) * depth
|
|
|
|
# classes
|
|
|
|
class DivideMax(nn.Module):
|
|
def __init__(self, dim):
|
|
super().__init__()
|
|
self.dim = dim
|
|
|
|
def forward(self, x):
|
|
maxes = x.amax(dim = self.dim, keepdim = True).detach()
|
|
return x / maxes
|
|
|
|
# https://arxiv.org/abs/2103.17239
|
|
class LayerScale(nn.Module):
|
|
def __init__(self, dim, depth, fn):
|
|
super().__init__()
|
|
if depth <= 18:
|
|
init_eps = 0.1
|
|
elif depth > 18 and depth <= 24:
|
|
init_eps = 1e-5
|
|
else:
|
|
init_eps = 1e-6
|
|
|
|
scale = torch.zeros(1, 1, dim).fill_(init_eps)
|
|
self.scale = nn.Parameter(scale)
|
|
self.fn = fn
|
|
def forward(self, x, **kwargs):
|
|
return self.fn(x, **kwargs) * self.scale
|
|
|
|
# layer norm
|
|
|
|
class PreNorm(nn.Module):
|
|
def __init__(self, dim, fn, sandwich = False):
|
|
super().__init__()
|
|
self.norm = nn.LayerNorm(dim)
|
|
self.norm_out = nn.LayerNorm(dim) if sandwich else nn.Identity()
|
|
self.fn = fn
|
|
|
|
def forward(self, x, **kwargs):
|
|
x = self.norm(x)
|
|
x = self.fn(x, **kwargs)
|
|
return self.norm_out(x)
|
|
|
|
# feed forward
|
|
|
|
class GEGLU(nn.Module):
|
|
def forward(self, x):
|
|
x, gates = x.chunk(2, dim = -1)
|
|
return x * F.gelu(gates)
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(self, dim, dropout = 0., mult = 4.):
|
|
super().__init__()
|
|
self.net = nn.Sequential(
|
|
nn.Linear(dim, dim * mult * 2),
|
|
GEGLU(),
|
|
nn.Dropout(dropout),
|
|
nn.Linear(dim * mult, dim)
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.net(x)
|
|
|
|
# token shift classes
|
|
|
|
class PreShiftToken(nn.Module):
|
|
def __init__(self, fn, image_size, seq_len):
|
|
super().__init__()
|
|
self.fn = fn
|
|
self.image_size = image_size
|
|
self.seq_len = seq_len
|
|
|
|
def forward(self, x, **kwargs):
|
|
n = x.shape[1]
|
|
seq_len, image_size = self.seq_len, self.image_size
|
|
img_seq_len = image_size ** 2
|
|
text_len = seq_len - img_seq_len + 1
|
|
padding = seq_len - n + 1
|
|
|
|
# get text and image tokens
|
|
|
|
x_text, x_img = x[:, :text_len], x[:, text_len:]
|
|
x_img = F.pad(x_img, (0, 0, 0, padding))
|
|
x_img = rearrange(x_img, 'b (h w) d -> b h w d', h = image_size)
|
|
|
|
# shift 1 from the left for text tokens
|
|
|
|
x_text_shift, x_text_pass = x_text.chunk(2, dim = -1)
|
|
x_text_shift = F.pad(x_text_shift, (0, 0, 1, -1))
|
|
x_text = torch.cat((x_text_shift, x_text_pass), dim = -1)
|
|
|
|
# shift from top, left for image tokens
|
|
|
|
x_img_shift_top, x_img_shift_left, *x_img_pass = x_img.chunk(4, dim = -1)
|
|
x_img_shift_left = F.pad(x_img_shift_left, (0, 0, 1, -1))
|
|
x_img_shift_top = F.pad(x_img_shift_top, (0, 0, 0, 0, 1, -1))
|
|
x_img = torch.cat((x_img_shift_top, x_img_shift_left, *x_img_pass), dim = -1)
|
|
|
|
# merge text and image sequence back together
|
|
|
|
x_img = rearrange(x_img, 'b h w d -> b (h w) d')
|
|
x = torch.cat((x_text, x_img[:, :-padding]), dim = 1)
|
|
return self.fn(x, **kwargs)
|
|
|
|
# main transformer class
|
|
|
|
class Transformer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
dim,
|
|
depth,
|
|
seq_len,
|
|
reversible = False,
|
|
causal = True,
|
|
heads = 8,
|
|
dim_head = 64,
|
|
ff_mult = 4,
|
|
attn_dropout = 0.,
|
|
ff_dropout = 0.,
|
|
attn_types = None,
|
|
image_fmap_size = None,
|
|
oned_fmap_size = None,
|
|
sparse_attn = False,
|
|
stable = False,
|
|
sandwich_norm = False,
|
|
shift_tokens = False,
|
|
rotary_emb = True
|
|
):
|
|
super().__init__()
|
|
layers = nn.ModuleList([])
|
|
sparse_layer = cast_tuple(sparse_attn, depth)
|
|
|
|
attn_types = default(attn_types, ('full',))
|
|
attn_types = cast_tuple(attn_types)
|
|
attn_type_layer = islice(cycle(attn_types), depth)
|
|
|
|
for ind, sparse_attn, attn_type in zip(range(depth), sparse_layer, attn_type_layer):
|
|
if attn_type == 'full':
|
|
attn_class = partial(Attention, stable = stable)
|
|
elif attn_type == 'sparse':
|
|
attn_class = SparseAttention
|
|
elif attn_type == 'axial_row':
|
|
attn_class = partial(SparseAxialCausalAttention, seq_len = seq_len, axis = 0, image_size = image_fmap_size, stable = stable)
|
|
elif attn_type == 'axial_col':
|
|
attn_class = partial(SparseAxialCausalAttention, seq_len = seq_len, axis = 1, image_size = image_fmap_size, stable = stable)
|
|
elif attn_type == 'conv_like':
|
|
attn_class = partial(SparseConvCausalAttention, seq_len = seq_len, image_size = image_fmap_size, stable = stable)
|
|
elif attn_type == 'mlp':
|
|
attn_class = partial(gMLPBlock, seq_len = seq_len)
|
|
else:
|
|
raise ValueError(f'attention type "{attn_type}" is not valid')
|
|
|
|
if attn_type != 'mlp':
|
|
attn = attn_class(dim, causal = causal, seq_len = seq_len, heads = heads, dim_head = dim_head, dropout = attn_dropout)
|
|
else:
|
|
attn = attn_class(dim = dim, causal = causal, dim_ff = dim * 4)
|
|
|
|
ff = FeedForward(dim, mult = ff_mult, dropout = ff_dropout)
|
|
|
|
if shift_tokens:
|
|
attn, ff = map(lambda t: PreShiftToken(t, image_size = image_fmap_size, seq_len = seq_len), (attn, ff))
|
|
|
|
layers.append(nn.ModuleList([
|
|
LayerScale(dim, ind + 1, PreNorm(dim, attn, sandwich = sandwich_norm)),
|
|
LayerScale(dim, ind + 1, PreNorm(dim, ff, sandwich = sandwich_norm))
|
|
]))
|
|
|
|
execute_type = ReversibleSequence if reversible else SequentialSequence
|
|
route_attn = ((True, False),) * depth
|
|
attn_route_map = {'mask': route_attn, 'rotary_pos_emb': route_attn}
|
|
|
|
self.layers = execute_type(layers, args_route = attn_route_map)
|
|
|
|
# generate positional embeddings for rotary
|
|
|
|
pos_emb = None
|
|
if rotary_emb:
|
|
assert 'mlp' not in attn_types, 'you cannot use gMLPs if rotary embedding is turned on'
|
|
|
|
rot_dim = dim_head // 3
|
|
img_seq_len = (image_fmap_size ** 2) if image_fmap_size is not None else oned_fmap_size
|
|
text_len = seq_len - img_seq_len + 1
|
|
|
|
text_pos_emb = RotaryEmbedding(dim = rot_dim)
|
|
img_axial_pos_emb = RotaryEmbedding(dim = rot_dim, freqs_for = 'pixel')
|
|
|
|
text_freqs = text_pos_emb(torch.arange(text_len))
|
|
img_to_text_freqs = text_pos_emb(torch.full((img_seq_len,), 8192)) # image is given a position far away from text
|
|
text_freqs = torch.cat((text_freqs, img_to_text_freqs), dim = 0)
|
|
|
|
img_freqs_axial = img_axial_pos_emb(torch.linspace(-1, 1, steps = image_fmap_size if image_fmap_size is not None else oned_fmap_size))
|
|
img_freqs = broadcat((rearrange(img_freqs_axial, 'i d -> i () d'), rearrange(img_freqs_axial, 'j d -> () j d')), dim = -1)
|
|
img_freqs = rearrange(img_freqs, 'h w d -> (h w) d')
|
|
|
|
text_axial_freqs = img_axial_pos_emb(torch.full((text_len,), -10.)) # text is given a position of -10 apart from the image axial positions, which is from range [-1, 1]
|
|
text_axial_freqs = torch.cat((text_axial_freqs, text_axial_freqs), dim = -1)
|
|
img_freqs = torch.cat((text_axial_freqs, img_freqs), dim = 0)
|
|
|
|
pos_emb = torch.cat((text_freqs, img_freqs), dim = -1)
|
|
pos_emb = rearrange(pos_emb, 'n d -> () n d')
|
|
|
|
self.register_buffer('pos_emb', pos_emb)
|
|
|
|
def forward(self, x, **kwargs):
|
|
return self.layers(x, rotary_pos_emb = self.pos_emb, **kwargs) |