forked from mrq/DL-Art-School
65 lines
2.7 KiB
Python
65 lines
2.7 KiB
Python
"""create dataset and dataloader"""
|
|
import logging
|
|
import torch
|
|
import torch.utils.data
|
|
|
|
|
|
def create_dataloader(dataset, dataset_opt, opt=None, sampler=None):
|
|
phase = dataset_opt['phase']
|
|
if phase == 'train':
|
|
if opt['dist']:
|
|
world_size = torch.distributed.get_world_size()
|
|
num_workers = dataset_opt['n_workers']
|
|
assert dataset_opt['batch_size'] % world_size == 0
|
|
batch_size = dataset_opt['batch_size'] // world_size
|
|
shuffle = False
|
|
else:
|
|
num_workers = dataset_opt['n_workers'] * len(opt['gpu_ids'])
|
|
batch_size = dataset_opt['batch_size']
|
|
shuffle = True
|
|
return torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=shuffle,
|
|
num_workers=num_workers, sampler=sampler, drop_last=True,
|
|
pin_memory=True)
|
|
else:
|
|
batch_size = dataset_opt['batch_size'] or 1
|
|
return torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=0,
|
|
pin_memory=True)
|
|
|
|
|
|
def create_dataset(dataset_opt):
|
|
mode = dataset_opt['mode']
|
|
# datasets for image restoration
|
|
if mode == 'fullimage':
|
|
from data.full_image_dataset import FullImageDataset as D
|
|
elif mode == 'single_image_extensible':
|
|
from data.single_image_dataset import SingleImageDataset as D
|
|
elif mode == 'multi_frame_extensible':
|
|
from data.multi_frame_dataset import MultiFrameDataset as D
|
|
elif mode == 'combined':
|
|
from data.combined_dataset import CombinedDataset as D
|
|
elif mode == 'multiscale':
|
|
from data.multiscale_dataset import MultiScaleDataset as D
|
|
elif mode == 'paired_frame':
|
|
from data.paired_frame_dataset import PairedFrameDataset as D
|
|
elif mode == 'stylegan2':
|
|
from data.stylegan2_dataset import Stylegan2Dataset as D
|
|
elif mode == 'imagefolder':
|
|
from data.image_folder_dataset import ImageFolderDataset as D
|
|
elif mode == 'torch_dataset':
|
|
from data.torch_dataset import TorchDataset as D
|
|
elif mode == 'byol_dataset':
|
|
from data.byol_attachment import ByolDatasetWrapper as D
|
|
elif mode == 'byol_structured_dataset':
|
|
from data.byol_attachment import StructuredCropDatasetWrapper as D
|
|
elif mode == 'random_aug_wrapper':
|
|
from data.byol_attachment import DatasetRandomAugWrapper as D
|
|
elif mode == 'random_dataset':
|
|
from data.random_dataset import RandomDataset as D
|
|
elif mode == 'zipfile':
|
|
from data.zip_file_dataset import ZipFileDataset as D
|
|
else:
|
|
raise NotImplementedError('Dataset [{:s}] is not recognized.'.format(mode))
|
|
dataset = D(dataset_opt)
|
|
|
|
return dataset
|