forked from mrq/DL-Art-School
193cdc6636
Also cleans up a lot of old discriminator models that I have no intention of using again.
368 lines
16 KiB
Python
368 lines
16 KiB
Python
import random
|
|
from time import time
|
|
import numpy as np
|
|
|
|
import torch
|
|
import torchvision
|
|
from torch.utils.data import Dataset
|
|
from kornia import augmentation as augs, kornia, Resample
|
|
from kornia import filters
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
# Wrapper for a DLAS Dataset class that applies random augmentations from the BYOL paper to BOTH the 'lq' and 'hq'
|
|
# inputs. These are then outputted as 'aug1' and 'aug2'.
|
|
from tqdm import tqdm
|
|
|
|
from data import create_dataset
|
|
from models.arch_util import PixelUnshuffle
|
|
from utils.util import opt_get
|
|
|
|
|
|
class RandomApply(nn.Module):
|
|
def __init__(self, fn, p):
|
|
super().__init__()
|
|
self.fn = fn
|
|
self.p = p
|
|
def forward(self, x):
|
|
if random.random() > self.p:
|
|
return x
|
|
return self.fn(x)
|
|
|
|
|
|
class ByolDatasetWrapper(Dataset):
|
|
def __init__(self, opt):
|
|
super().__init__()
|
|
self.wrapped_dataset = create_dataset(opt['dataset'])
|
|
self.cropped_img_size = opt['crop_size']
|
|
self.key1 = opt_get(opt, ['key1'], 'hq')
|
|
self.key2 = opt_get(opt, ['key2'], 'lq')
|
|
for_sr = opt_get(opt, ['for_sr'], False) # When set, color alterations and blurs are disabled.
|
|
|
|
augmentations = [ \
|
|
augs.RandomHorizontalFlip(),
|
|
augs.RandomResizedCrop((self.cropped_img_size, self.cropped_img_size))]
|
|
if not for_sr:
|
|
augmentations.extend([RandomApply(augs.ColorJitter(0.8, 0.8, 0.8, 0.2), p=0.8),
|
|
augs.RandomGrayscale(p=0.2),
|
|
RandomApply(filters.GaussianBlur2d((3, 3), (1.5, 1.5)), p=0.1)])
|
|
if opt['normalize']:
|
|
# The paper calls for normalization. Most datasets/models in this repo don't use this.
|
|
# Recommend setting true if you want to train exactly like the paper.
|
|
augmentations.append(augs.Normalize(mean=torch.tensor([0.485, 0.456, 0.406]), std=torch.tensor([0.229, 0.224, 0.225])))
|
|
self.aug = nn.Sequential(*augmentations)
|
|
|
|
def __getitem__(self, item):
|
|
item = self.wrapped_dataset[item]
|
|
item.update({'aug1': self.aug(item[self.key1]).squeeze(dim=0), 'aug2': self.aug(item[self.key2]).squeeze(dim=0)})
|
|
return item
|
|
|
|
def __len__(self):
|
|
return len(self.wrapped_dataset)
|
|
|
|
|
|
# Basically the same as ByolDatasetWrapper except only produces 1 augmentation and stores in the 'lr' key. Also applies
|
|
# crop&resize to 2D tensors in the state dict with the word "label" in them.
|
|
class DatasetRandomAugWrapper(Dataset):
|
|
def __init__(self, opt):
|
|
super().__init__()
|
|
self.wrapped_dataset = create_dataset(opt['dataset'])
|
|
self.cropped_img_size = opt['crop_size']
|
|
self.includes_labels = opt['includes_labels']
|
|
augmentations = [ \
|
|
RandomApply(augs.ColorJitter(0.4, 0.4, 0.4, 0.2), p=0.8),
|
|
augs.RandomGrayscale(p=0.2),
|
|
RandomApply(filters.GaussianBlur2d((3, 3), (1.5, 1.5)), p=0.1)]
|
|
self.aug = nn.Sequential(*augmentations)
|
|
self.rrc = nn.Sequential(*[
|
|
augs.RandomHorizontalFlip(),
|
|
augs.RandomResizedCrop((self.cropped_img_size, self.cropped_img_size))])
|
|
|
|
def __getitem__(self, item):
|
|
item = self.wrapped_dataset[item]
|
|
hq = self.aug(item['hq'].unsqueeze(0)).squeeze(0)
|
|
labels = []
|
|
dtypes = []
|
|
for k in item.keys():
|
|
if 'label' in k and isinstance(item[k], torch.Tensor) and len(item[k].shape) == 3:
|
|
assert item[k].shape[0] == 1 # Only supports a channel dim of 1.
|
|
labels.append(k)
|
|
dtypes.append(item[k].dtype)
|
|
hq = torch.cat([hq, item[k].type(torch.float)], dim=0)
|
|
hq = self.rrc(hq.unsqueeze(0)).squeeze(0)
|
|
for i, k in enumerate(labels):
|
|
# Strip out any label values that are not whole numbers.
|
|
item[k] = hq[3+i:3+i+1,:,:]
|
|
whole = (item[k].round() == item[k])
|
|
item[k] = item[k] * whole
|
|
item[k] = item[k].type(dtypes[i])
|
|
item['lq'] = hq[:3,:,:]
|
|
item['hq'] = item['lq']
|
|
return item
|
|
|
|
def __len__(self):
|
|
return len(self.wrapped_dataset)
|
|
|
|
|
|
def test_dataset_random_aug_wrapper():
|
|
opt = {
|
|
'dataset': {
|
|
'mode': 'imagefolder',
|
|
'name': 'amalgam',
|
|
'paths': ['F:\\4k6k\\datasets\\ns_images\\512_unsupervised'],
|
|
'weights': [1],
|
|
'target_size': 512,
|
|
'force_multiple': 1,
|
|
'scale': 1,
|
|
'fixed_corruptions': ['jpeg-broad'],
|
|
'random_corruptions': ['noise-5', 'none'],
|
|
'num_corrupts_per_image': 1,
|
|
'corrupt_before_downsize': False,
|
|
'labeler': {
|
|
'type': 'patch_labels',
|
|
'label_file': 'F:\\4k6k\\datasets\\ns_images\\512_unsupervised\\categories.json'
|
|
}
|
|
},
|
|
'crop_size': 512,
|
|
'includes_labels': True,
|
|
}
|
|
|
|
ds = DatasetRandomAugWrapper(opt)
|
|
import os
|
|
os.makedirs("debug", exist_ok=True)
|
|
for i in tqdm(range(0, len(ds))):
|
|
o = ds[random.randint(0, len(ds)-1)]
|
|
for k, v in o.items():
|
|
# 'lq', 'hq', 'aug1', 'aug2',
|
|
if k in ['hq']:
|
|
torchvision.utils.save_image(v.unsqueeze(0), "debug/%i_%s.png" % (i, k))
|
|
masked = v * (o['labels_mask'] * .5 + .5)
|
|
#torchvision.utils.save_image(masked.unsqueeze(0), "debug/%i_%s_masked.png" % (i, k))
|
|
# Pick a random (non-zero) label and spit it out with the textual label.
|
|
if len(o['labels'].unique()) > 1:
|
|
randlbl = np.random.choice(o['labels'].unique()[1:])
|
|
moremask = v * ((1*(o['labels'] == randlbl))*.5+.5)
|
|
torchvision.utils.save_image(moremask.unsqueeze(0), "debug/%i_%s_%s.png" % (i, k, o['label_strings'][randlbl]))
|
|
|
|
|
|
def no_batch_interpolate(i, size, mode):
|
|
i = i.unsqueeze(0)
|
|
i = F.interpolate(i, size=size, mode=mode)
|
|
return i.squeeze(0)
|
|
|
|
|
|
# Performs a 1-d translation of "other":
|
|
# If other<ref, returns 0.
|
|
# Else: return other-ref
|
|
def snap(ref, other):
|
|
if other < ref:
|
|
return 0
|
|
return other - ref
|
|
|
|
|
|
# Pads a tensor with zeros so that it fits in a dxd square.
|
|
def pad_to(im, d):
|
|
if len(im.shape) == 3:
|
|
pd = torch.zeros((im.shape[0],d,d))
|
|
pd[:, :im.shape[1], :im.shape[2]] = im
|
|
else:
|
|
pd = torch.zeros((im.shape[0],im.shape[1],d,d), device=im.device)
|
|
pd[:, :, :im.shape[2], :im.shape[3]] = im
|
|
return pd
|
|
|
|
|
|
# Variation of RandomResizedCrop, which picks a region of the image that the two augments must share. The augments
|
|
# then propagate off random corners of the shared region, using the same scale.
|
|
#
|
|
# Operates in units of "multiple". The intent is that this multiple is equivalent to the compression multiple of the
|
|
# latent space being used so that each structural unit corresponds to a latent unit.
|
|
class RandomSharedRegionCrop(nn.Module):
|
|
def __init__(self, multiple, jitter_range=0):
|
|
super().__init__()
|
|
self.multiple = multiple
|
|
self.jitter_range = jitter_range # When specified, images are shifted an additional random([-j,j]) pixels where j=jitter_range
|
|
|
|
def forward(self, i1, i2):
|
|
assert i1.shape[-1] == i2.shape[-1]
|
|
# Outline of the general algorithm:
|
|
# 1. Assume the input is a square. Divide it by self.multiple to get working units.
|
|
# 2. Pick a random width, height and top corner location for the first patch.
|
|
# 3. Pick a random width, height and top corner location for the second patch.
|
|
# Note: All dims from (2) and (3) must contain at least half of the image, guaranteeing overlap.
|
|
# 4. Build patches from input images. Resize them appropriately. Apply translational jitter.\
|
|
# 5. Randomly flip image 2 if needed.
|
|
# 5. Compute the metrics needed to extract overlapping regions from the resized patches: top, left,
|
|
# original_height, original_width.
|
|
# 6. Compute the "shared_view" from the above data.
|
|
|
|
# Step 1
|
|
c, d, _ = i1.shape
|
|
assert d % self.multiple == 0 and d > (self.multiple*3)
|
|
d = d // self.multiple
|
|
|
|
# Step 2
|
|
base_w = random.randint(d//2+1, d-1)
|
|
base_l = random.randint(0, d-base_w)
|
|
base_h = random.randint(base_w-1, base_w+1)
|
|
base_t = random.randint(0, d-base_h)
|
|
base_r, base_b = base_l+base_w, base_t+base_h
|
|
|
|
# Step 3
|
|
im2_w = random.randint(d//2+1, d-1)
|
|
im2_l = random.randint(0, d-im2_w)
|
|
im2_h = random.randint(im2_w-1, im2_w+1)
|
|
im2_t = random.randint(0, d-im2_h)
|
|
im2_r, im2_b = im2_l+im2_w, im2_t+im2_h
|
|
|
|
# Step 4
|
|
m = self.multiple
|
|
jl, jt = random.randint(-self.jitter_range, self.jitter_range), random.randint(-self.jitter_range, self.jitter_range)
|
|
jt = jt if base_t != 0 else abs(jt) # If the top of a patch is zero, a negative jitter will cause it to go negative.
|
|
jt = jt if (base_t+base_h)*m != i1.shape[1] else 0 # Likewise, jitter shouldn't allow the patch to go over-bounds.
|
|
jl = jl if base_l != 0 else abs(jl)
|
|
jl = jl if (base_l+base_w)*m != i1.shape[1] else 0
|
|
p1 = i1[:, base_t*m+jt:(base_t+base_h)*m+jt, base_l*m+jl:(base_l+base_w)*m+jl]
|
|
p1_resized = no_batch_interpolate(p1, size=(d*m, d*m), mode="bilinear")
|
|
jl, jt = random.randint(-self.jitter_range, self.jitter_range), random.randint(-self.jitter_range, self.jitter_range)
|
|
jt = jt if im2_t != 0 else abs(jt)
|
|
jt = jt if (im2_t+im2_h)*m != i2.shape[1] else 0
|
|
jl = jl if im2_l != 0 else abs(jl)
|
|
jl = jl if (im2_l+im2_w)*m != i2.shape[1] else 0
|
|
p2 = i2[:, im2_t*m+jt:(im2_t+im2_h)*m+jt, im2_l*m+jl:(im2_l+im2_w)*m+jl]
|
|
p2_resized = no_batch_interpolate(p2, size=(d*m, d*m), mode="bilinear")
|
|
|
|
# Step 5
|
|
should_flip = random.random() < .5
|
|
if should_flip:
|
|
should_flip = 1
|
|
p2_resized = kornia.geometry.transform.hflip(p2_resized)
|
|
else:
|
|
should_flip = 0
|
|
|
|
# Step 6
|
|
i1_shared_t, i1_shared_l = snap(base_t, im2_t), snap(base_l, im2_l)
|
|
i2_shared_t, i2_shared_l = snap(im2_t, base_t), snap(im2_l, base_l)
|
|
ix_h = min(base_b, im2_b) - max(base_t, im2_t)
|
|
ix_w = min(base_r, im2_r) - max(base_l, im2_l)
|
|
recompute_package = torch.tensor([d, base_h, base_w, i1_shared_t, i1_shared_l, im2_h, im2_w, i2_shared_t, i2_shared_l, should_flip, ix_h, ix_w], dtype=torch.long)
|
|
|
|
# Step 7
|
|
mask1 = torch.full((1, base_h*m, base_w*m), fill_value=.5)
|
|
mask1[:, i1_shared_t*m:(i1_shared_t+ix_h)*m, i1_shared_l*m:(i1_shared_l+ix_w)*m] = 1
|
|
masked1 = pad_to(p1 * mask1, d*m)
|
|
mask2 = torch.full((1, im2_h*m, im2_w*m), fill_value=.5)
|
|
mask2[:, i2_shared_t*m:(i2_shared_t+ix_h)*m, i2_shared_l*m:(i2_shared_l+ix_w)*m] = 1
|
|
masked2 = pad_to(p2 * mask2, d*m)
|
|
mask = torch.full((1, d*m, d*m), fill_value=.33)
|
|
mask[:, base_t*m:(base_t+base_w)*m, base_l*m:(base_l+base_h)*m] += .33
|
|
mask[:, im2_t*m:(im2_t+im2_w)*m, im2_l*m:(im2_l+im2_h)*m] += .33
|
|
masked_dbg = i1 * mask
|
|
|
|
# Step 8 - Rebuild shared regions for testing purposes.
|
|
p1_shuf, p2_shuf = PixelUnshuffle(self.multiple)(p1_resized.unsqueeze(0)), \
|
|
PixelUnshuffle(self.multiple)(p2_resized.unsqueeze(0))
|
|
i1_shared, i2_shared = reconstructed_shared_regions(p1_shuf, p2_shuf, recompute_package.unsqueeze(0))
|
|
i1_shared = pad_to(nn.PixelShuffle(self.multiple)(i1_shared).squeeze(0), d * m)
|
|
i2_shared = pad_to(nn.PixelShuffle(self.multiple)(i2_shared).squeeze(0), d*m)
|
|
|
|
return p1_resized, p2_resized, recompute_package, masked1, masked2, masked_dbg, i1_shared, i2_shared
|
|
|
|
|
|
# Uses the recompute package returned from the above dataset to extract matched-size "similar regions" from two feature
|
|
# maps.
|
|
def reconstructed_shared_regions(fea1, fea2, recompute_package: torch.Tensor):
|
|
package = recompute_package.cpu()
|
|
res1 = []
|
|
res2 = []
|
|
pad_dim = torch.max(package[:, -2:]).item()
|
|
# It'd be real nice if we could do this at the batch level, but I don't see a really good way to do that outside
|
|
# of conforming the recompute_package across the entire batch.
|
|
for b in range(package.shape[0]):
|
|
expected_dim, f1_h, f1_w, f1s_t, f1s_l, f2_h, f2_w, f2s_t, f2s_l, should_flip, s_h, s_w = tuple(package[b].tolist())
|
|
# If you are hitting this assert, you specified `latent_multiple` in your dataset config wrong.
|
|
assert expected_dim == fea1.shape[2] and expected_dim == fea2.shape[2]
|
|
|
|
# Unflip 2 if needed.
|
|
f2 = fea2[b]
|
|
if should_flip == 1:
|
|
f2 = kornia.geometry.transform.hflip(f2)
|
|
# Resize the input features to match
|
|
f1s = F.interpolate(fea1[b].unsqueeze(0), (f1_h, f1_w), mode="nearest")
|
|
f2s = F.interpolate(f2.unsqueeze(0), (f2_h, f2_w), mode="nearest")
|
|
# Outputs must be padded so they can "get along" with each other.
|
|
res1.append(pad_to(f1s[:, :, f1s_t:f1s_t+s_h, f1s_l:f1s_l+s_w], pad_dim))
|
|
res2.append(pad_to(f2s[:, :, f2s_t:f2s_t+s_h, f2s_l:f2s_l+s_w], pad_dim))
|
|
return torch.cat(res1, dim=0), torch.cat(res2, dim=0)
|
|
|
|
|
|
# Follows the general template of BYOL dataset, with the following changes:
|
|
# 1. Flip() is not applied.
|
|
# 2. Instead of RandomResizedCrop, a custom Transform, RandomSharedRegionCrop is used.
|
|
# 3. The dataset injects two integer tensors alongside the augmentations, which are used to index image regions shared
|
|
# by the joint augmentations.
|
|
# 4. The dataset injects an aug_shared_view for debugging purposes.
|
|
class StructuredCropDatasetWrapper(Dataset):
|
|
def __init__(self, opt):
|
|
super().__init__()
|
|
self.wrapped_dataset = create_dataset(opt['dataset'])
|
|
augmentations = [RandomApply(augs.ColorJitter(0.8, 0.8, 0.8, 0.2), p=0.8),
|
|
augs.RandomGrayscale(p=0.2),
|
|
RandomApply(filters.GaussianBlur2d((3, 3), (1.5, 1.5)), p=0.1)]
|
|
self.aug = nn.Sequential(*augmentations)
|
|
self.rrc = RandomSharedRegionCrop(opt['latent_multiple'], opt_get(opt, ['jitter_range'], 0))
|
|
|
|
def __getitem__(self, item):
|
|
item = self.wrapped_dataset[item]
|
|
a1 = self.aug(item['hq']).squeeze(dim=0)
|
|
a2 = self.aug(item['lq']).squeeze(dim=0)
|
|
a1, a2, sr_dim, m1, m2, db, i1s, i2s = self.rrc(a1, a2)
|
|
item.update({'aug1': a1, 'aug2': a2, 'similar_region_dimensions': sr_dim,
|
|
'masked1': m1, 'masked2': m2, 'aug_shared_view': db,
|
|
'i1_shared': i1s, 'i2_shared': i2s})
|
|
return item
|
|
|
|
def __len__(self):
|
|
return len(self.wrapped_dataset)
|
|
|
|
|
|
# For testing this dataset.
|
|
def test_structured_crop_dataset_wrapper():
|
|
opt = {
|
|
'dataset':
|
|
{
|
|
'mode': 'imagefolder',
|
|
'name': 'amalgam',
|
|
'paths': ['F:\\4k6k\\datasets\\ns_images\\512_unsupervised'],
|
|
'weights': [1],
|
|
'target_size': 256,
|
|
'force_multiple': 32,
|
|
'scale': 1,
|
|
'fixed_corruptions': ['jpeg-broad', 'gaussian_blur'],
|
|
'random_corruptions': ['noise-5', 'none'],
|
|
'num_corrupts_per_image': 1,
|
|
'corrupt_before_downsize': True,
|
|
},
|
|
'latent_multiple': 16,
|
|
'jitter_range': 0,
|
|
}
|
|
|
|
ds = StructuredCropDatasetWrapper(opt)
|
|
import os
|
|
os.makedirs("debug", exist_ok=True)
|
|
for i in tqdm(range(0, len(ds))):
|
|
o = ds[random.randint(0, len(ds)-1)]
|
|
#for k, v in o.items():
|
|
# 'lq', 'hq', 'aug1', 'aug2',
|
|
#if k in [ 'aug_shared_view', 'masked1', 'masked2']:
|
|
#torchvision.utils.save_image(v.unsqueeze(0), "debug/%i_%s.png" % (i, k))
|
|
rcpkg = o['similar_region_dimensions']
|
|
pixun = PixelUnshuffle(16)
|
|
pixsh = nn.PixelShuffle(16)
|
|
rc1, rc2 = reconstructed_shared_regions(pixun(o['aug1'].unsqueeze(0)), pixun(o['aug2'].unsqueeze(0)), rcpkg.unsqueeze(0))
|
|
#torchvision.utils.save_image(pixsh(rc1), "debug/%i_rc1.png" % (i,))
|
|
#torchvision.utils.save_image(pixsh(rc2), "debug/%i_rc2.png" % (i,))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_dataset_random_aug_wrapper()
|