forked from mrq/DL-Art-School
784b96c059
- Allow image_folder_dataset to normalize inbound images - ExtensibleTrainer can denormalize images on the output path - Support .webp - an output from LSUN - Support logistic GAN divergence loss - Support stylegan2 TF weight extraction for discriminator - New injector that produces latent noise (with separated paths) - Modify FID evaluator to be operable with rosinality-style GANs
301 lines
8.7 KiB
Python
301 lines
8.7 KiB
Python
# Converts from Tensorflow Stylegan2 weights to weights used by this model.
|
|
# Original source: https://raw.githubusercontent.com/rosinality/stylegan2-pytorch/master/convert_weight.py
|
|
#
|
|
# Also doesn't require you to install Tensorflow 1.15 or clone the nVidia repo.
|
|
|
|
import argparse
|
|
import os
|
|
import sys
|
|
import pickle
|
|
import math
|
|
|
|
import torch
|
|
import numpy as np
|
|
from torchvision import utils
|
|
|
|
from models.stylegan.stylegan2_rosinality import Generator, Discriminator
|
|
|
|
|
|
# Converts from the TF state_dict input provided into the vars originally expected from the rosinality converter.
|
|
def get_vars(vars, source_name):
|
|
net_name = source_name.split('/')[0]
|
|
vars_as_tuple_list = vars[net_name]['variables']
|
|
result_vars = {}
|
|
for t in vars_as_tuple_list:
|
|
result_vars[t[0]] = t[1]
|
|
return result_vars, source_name.replace(net_name + "/", "")
|
|
|
|
def get_vars_direct(vars, source_name):
|
|
v, n = get_vars(vars, source_name)
|
|
return v[n]
|
|
|
|
|
|
def convert_modconv(vars, source_name, target_name, flip=False):
|
|
vars, source_name = get_vars(vars, source_name)
|
|
weight = vars[source_name + "/weight"]
|
|
mod_weight = vars[source_name + "/mod_weight"]
|
|
mod_bias = vars[source_name + "/mod_bias"]
|
|
noise = vars[source_name + "/noise_strength"]
|
|
bias = vars[source_name + "/bias"]
|
|
|
|
dic = {
|
|
"conv.weight": np.expand_dims(weight.transpose((3, 2, 0, 1)), 0),
|
|
"conv.modulation.weight": mod_weight.transpose((1, 0)),
|
|
"conv.modulation.bias": mod_bias + 1,
|
|
"noise.weight": np.array([noise]),
|
|
"activate.bias": bias,
|
|
}
|
|
|
|
dic_torch = {}
|
|
|
|
for k, v in dic.items():
|
|
dic_torch[target_name + "." + k] = torch.from_numpy(v)
|
|
|
|
if flip:
|
|
dic_torch[target_name + ".conv.weight"] = torch.flip(
|
|
dic_torch[target_name + ".conv.weight"], [3, 4]
|
|
)
|
|
|
|
return dic_torch
|
|
|
|
|
|
def convert_conv(vars, source_name, target_name, bias=True, start=0):
|
|
vars, source_name = get_vars(vars, source_name)
|
|
weight = vars[source_name + "/weight"]
|
|
|
|
dic = {"weight": weight.transpose((3, 2, 0, 1))}
|
|
|
|
if bias:
|
|
dic["bias"] = vars[source_name + "/bias"]
|
|
|
|
dic_torch = {}
|
|
|
|
dic_torch[target_name + f".{start}.weight"] = torch.from_numpy(dic["weight"])
|
|
|
|
if bias:
|
|
dic_torch[target_name + f".{start + 1}.bias"] = torch.from_numpy(dic["bias"])
|
|
|
|
return dic_torch
|
|
|
|
|
|
def convert_torgb(vars, source_name, target_name):
|
|
vars, source_name = get_vars(vars, source_name)
|
|
weight = vars[source_name + "/weight"]
|
|
mod_weight = vars[source_name + "/mod_weight"]
|
|
mod_bias = vars[source_name + "/mod_bias"]
|
|
bias = vars[source_name + "/bias"]
|
|
|
|
dic = {
|
|
"conv.weight": np.expand_dims(weight.transpose((3, 2, 0, 1)), 0),
|
|
"conv.modulation.weight": mod_weight.transpose((1, 0)),
|
|
"conv.modulation.bias": mod_bias + 1,
|
|
"bias": bias.reshape((1, 3, 1, 1)),
|
|
}
|
|
|
|
dic_torch = {}
|
|
|
|
for k, v in dic.items():
|
|
dic_torch[target_name + "." + k] = torch.from_numpy(v)
|
|
|
|
return dic_torch
|
|
|
|
|
|
def convert_dense(vars, source_name, target_name):
|
|
vars, source_name = get_vars(vars, source_name)
|
|
weight = vars[source_name + "/weight"]
|
|
bias = vars[source_name + "/bias"]
|
|
|
|
dic = {"weight": weight.transpose((1, 0)), "bias": bias}
|
|
|
|
dic_torch = {}
|
|
|
|
for k, v in dic.items():
|
|
dic_torch[target_name + "." + k] = torch.from_numpy(v)
|
|
|
|
return dic_torch
|
|
|
|
|
|
def update(state_dict, new):
|
|
for k, v in new.items():
|
|
state_dict[k] = v
|
|
|
|
|
|
def discriminator_fill_statedict(statedict, vars, size):
|
|
log_size = int(math.log(size, 2))
|
|
|
|
update(statedict, convert_conv(vars, f"D/{size}x{size}/FromRGB", "convs.0"))
|
|
|
|
conv_i = 1
|
|
|
|
for i in range(log_size - 2, 0, -1):
|
|
reso = 4 * 2 ** i
|
|
update(
|
|
statedict,
|
|
convert_conv(vars, f"D/{reso}x{reso}/Conv0", f"convs.{conv_i}.conv1"),
|
|
)
|
|
update(
|
|
statedict,
|
|
convert_conv(
|
|
vars, f"D/{reso}x{reso}/Conv1_down", f"convs.{conv_i}.conv2", start=1
|
|
),
|
|
)
|
|
update(
|
|
statedict,
|
|
convert_conv(
|
|
vars, f"D/{reso}x{reso}/Skip", f"convs.{conv_i}.skip", start=1, bias=False
|
|
),
|
|
)
|
|
conv_i += 1
|
|
|
|
update(statedict, convert_conv(vars, f"D/4x4/Conv", "final_conv"))
|
|
update(statedict, convert_dense(vars, f"D/4x4/Dense0", "final_linear.0"))
|
|
update(statedict, convert_dense(vars, f"D/Output", "final_linear.1"))
|
|
|
|
return statedict
|
|
|
|
|
|
def fill_statedict(state_dict, vars, size):
|
|
log_size = int(math.log(size, 2))
|
|
|
|
for i in range(8):
|
|
update(state_dict, convert_dense(vars, f"G_mapping/Dense{i}", f"style.{i + 1}"))
|
|
|
|
update(
|
|
state_dict,
|
|
{
|
|
"input.input": torch.from_numpy(
|
|
get_vars_direct(vars, "G_synthesis/4x4/Const/const")
|
|
)
|
|
},
|
|
)
|
|
|
|
update(state_dict, convert_torgb(vars, "G_synthesis/4x4/ToRGB", "to_rgb1"))
|
|
|
|
for i in range(log_size - 2):
|
|
reso = 4 * 2 ** (i + 1)
|
|
update(
|
|
state_dict,
|
|
convert_torgb(vars, f"G_synthesis/{reso}x{reso}/ToRGB", f"to_rgbs.{i}"),
|
|
)
|
|
|
|
update(state_dict, convert_modconv(vars, "G_synthesis/4x4/Conv", "conv1"))
|
|
|
|
conv_i = 0
|
|
|
|
for i in range(log_size - 2):
|
|
reso = 4 * 2 ** (i + 1)
|
|
update(
|
|
state_dict,
|
|
convert_modconv(
|
|
vars,
|
|
f"G_synthesis/{reso}x{reso}/Conv0_up",
|
|
f"convs.{conv_i}",
|
|
flip=True,
|
|
),
|
|
)
|
|
update(
|
|
state_dict,
|
|
convert_modconv(
|
|
vars, f"G_synthesis/{reso}x{reso}/Conv1", f"convs.{conv_i + 1}"
|
|
),
|
|
)
|
|
conv_i += 2
|
|
|
|
for i in range(0, (log_size - 2) * 2 + 1):
|
|
update(
|
|
state_dict,
|
|
{
|
|
f"noises.noise_{i}": torch.from_numpy(
|
|
get_vars_direct(vars, f"G_synthesis/noise{i}")
|
|
)
|
|
},
|
|
)
|
|
|
|
return state_dict
|
|
|
|
|
|
if __name__ == "__main__":
|
|
device = "cuda"
|
|
|
|
parser = argparse.ArgumentParser(
|
|
description="Tensorflow to pytorch model checkpoint converter"
|
|
)
|
|
parser.add_argument(
|
|
"--gen", action="store_true", help="convert the generator weights"
|
|
)
|
|
parser.add_argument(
|
|
"--disc", action="store_true", help="convert the discriminator weights"
|
|
)
|
|
parser.add_argument(
|
|
"--channel_multiplier",
|
|
type=int,
|
|
default=2,
|
|
help="channel multiplier factor. config-f = 2, else = 1",
|
|
)
|
|
parser.add_argument("path", metavar="PATH", help="path to the tensorflow weights")
|
|
|
|
args = parser.parse_args()
|
|
sys.path.append('scripts\\stylegan2')
|
|
|
|
import dnnlib
|
|
from dnnlib.tflib.network import generator, discriminator, gen_ema
|
|
|
|
with open(args.path, "rb") as f:
|
|
pickle.load(f)
|
|
|
|
# Weight names are ordered by size. The last name will be something like '1024x1024/<blah>'. We just need to grab that first number.
|
|
size = int(generator['G_synthesis']['variables'][-1][0].split('x')[0])
|
|
|
|
g = Generator(size, 512, 8, channel_multiplier=args.channel_multiplier)
|
|
state_dict = g.state_dict()
|
|
state_dict = fill_statedict(state_dict, gen_ema, size)
|
|
g.load_state_dict(state_dict, strict=True)
|
|
|
|
d = Discriminator(size, args.channel_multiplier)
|
|
dstate_dict = d.state_dict()
|
|
dstate_dict = discriminator_fill_statedict(dstate_dict, discriminator, size)
|
|
d.load_state_dict(dstate_dict, strict=True)
|
|
|
|
|
|
latent_avg = torch.from_numpy(get_vars_direct(gen_ema, "G/dlatent_avg"))
|
|
|
|
ckpt = {"g_ema": state_dict, "latent_avg": latent_avg}
|
|
|
|
if args.gen:
|
|
g_train = Generator(size, 512, 8, channel_multiplier=args.channel_multiplier)
|
|
g_train_state = g_train.state_dict()
|
|
g_train_state = fill_statedict(g_train_state, generator, size)
|
|
ckpt["g"] = g_train_state
|
|
|
|
if args.disc:
|
|
disc = Discriminator(size, channel_multiplier=args.channel_multiplier)
|
|
d_state = disc.state_dict()
|
|
d_state = discriminator_fill_statedict(d_state, discriminator.vars, size)
|
|
ckpt["d"] = d_state
|
|
|
|
name = os.path.splitext(os.path.basename(args.path))[0]
|
|
torch.save(state_dict, f"{name}_gen.pth")
|
|
torch.save(dstate_dict, f"{name}_disc.pth")
|
|
|
|
batch_size = {256: 16, 512: 9, 1024: 4}
|
|
n_sample = batch_size.get(size, 25)
|
|
|
|
g = g.to(device)
|
|
d = d.to(device)
|
|
|
|
z = np.random.RandomState(1).randn(n_sample, 512).astype("float32")
|
|
|
|
with torch.no_grad():
|
|
img_pt, _ = g(
|
|
[torch.from_numpy(z).to(device)],
|
|
truncation=0.5,
|
|
truncation_latent=latent_avg.to(device),
|
|
randomize_noise=False,
|
|
)
|
|
disc = d(img_pt)
|
|
print(disc)
|
|
|
|
utils.save_image(
|
|
img_pt, name + ".png", nrow=n_sample, normalize=True, range=(-1, 1)
|
|
)
|