forked from mrq/DL-Art-School
71 lines
1.4 KiB
YAML
71 lines
1.4 KiB
YAML
# Not exactly the same as SRResNet in <Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network>
|
|
# With 16 Residual blocks w/o BN
|
|
|
|
#### general settings
|
|
name: 001_MSRResNetx4_scratch_DIV2K
|
|
use_tb_logger: true
|
|
model: sr
|
|
distortion: sr
|
|
scale: 4
|
|
gpu_ids: [0]
|
|
|
|
#### datasets
|
|
datasets:
|
|
train:
|
|
name: DIV2K
|
|
mode: LQGT
|
|
dataroot_GT: ../datasets/DIV2K/DIV2K800_sub.lmdb
|
|
dataroot_LQ: ../datasets/DIV2K/DIV2K800_sub_bicLRx4.lmdb
|
|
|
|
use_shuffle: true
|
|
n_workers: 6 # per GPU
|
|
batch_size: 16
|
|
target_size: 128
|
|
use_flip: true
|
|
use_rot: true
|
|
color: RGB
|
|
val:
|
|
name: val_set5
|
|
mode: LQGT
|
|
dataroot_GT: ../datasets/val_set5/Set5
|
|
dataroot_LQ: ../datasets/val_set5/Set5_bicLRx4
|
|
|
|
#### network structures
|
|
network_G:
|
|
which_model_G: MSRResNet
|
|
in_nc: 3
|
|
out_nc: 3
|
|
nf: 64
|
|
nb: 16
|
|
upscale: 4
|
|
|
|
#### path
|
|
path:
|
|
pretrain_model_G: ~
|
|
strict_load: true
|
|
resume_state: ~
|
|
|
|
#### training settings: learning rate scheme, loss
|
|
train:
|
|
lr_G: !!float 2e-4
|
|
lr_scheme: CosineAnnealingLR_Restart
|
|
beta1: 0.9
|
|
beta2: 0.99
|
|
niter: 1000000
|
|
warmup_iter: -1 # no warm up
|
|
T_period: [250000, 250000, 250000, 250000]
|
|
restarts: [250000, 500000, 750000]
|
|
restart_weights: [1, 1, 1]
|
|
eta_min: !!float 1e-7
|
|
|
|
pixel_criterion: l1
|
|
pixel_weight: 1.0
|
|
|
|
manual_seed: 10
|
|
val_freq: !!float 5e3
|
|
|
|
#### logger
|
|
logger:
|
|
print_freq: 100
|
|
save_checkpoint_freq: !!float 5e3
|