forked from mrq/DL-Art-School
64 lines
2.4 KiB
Python
64 lines
2.4 KiB
Python
from torch import nn
|
|
|
|
from trainer.losses import ConfigurableLoss
|
|
|
|
|
|
class Tacotron2Loss(ConfigurableLoss):
|
|
def __init__(self, opt_loss, env):
|
|
super().__init__(opt_loss, env)
|
|
self.mel_target_key = opt_loss['mel_target_key']
|
|
self.mel_output_key = opt_loss['mel_output_key']
|
|
self.mel_output_postnet_key = opt_loss['mel_output_postnet_key']
|
|
self.gate_target_key = opt_loss['gate_target_key']
|
|
self.gate_output_key = opt_loss['gate_output_key']
|
|
self.last_mel_loss = 0
|
|
self.last_gate_loss = 0
|
|
|
|
def forward(self, _, state):
|
|
mel_target, gate_target = state[self.mel_target_key], state[self.gate_target_key]
|
|
mel_target.requires_grad = False
|
|
gate_target.requires_grad = False
|
|
gate_target = gate_target.view(-1, 1)
|
|
|
|
mel_out, mel_out_postnet, gate_out = state[self.mel_output_key], state[self.mel_output_postnet_key], state[self.gate_output_key]
|
|
gate_out = gate_out.view(-1, 1)
|
|
mel_loss = nn.MSELoss()(mel_out, mel_target) + \
|
|
nn.MSELoss()(mel_out_postnet, mel_target)
|
|
gate_loss = nn.BCEWithLogitsLoss()(gate_out, gate_target)
|
|
self.last_mel_loss = mel_loss.detach().clone().mean().item()
|
|
self.last_gate_loss = gate_loss.detach().clone().mean().item()
|
|
return mel_loss + gate_loss
|
|
|
|
def extra_metrics(self):
|
|
return {
|
|
'mel_loss': self.last_mel_loss,
|
|
'gate_loss': self.last_gate_loss
|
|
}
|
|
|
|
|
|
class Tacotron2LossRaw(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.last_mel_loss = 0
|
|
self.last_gate_loss = 0
|
|
|
|
def forward(self, model_output, targets):
|
|
mel_target, gate_target = targets[0], targets[1]
|
|
mel_target.requires_grad = False
|
|
gate_target.requires_grad = False
|
|
gate_target = gate_target.view(-1, 1)
|
|
|
|
mel_out, mel_out_postnet, gate_out, _ = model_output
|
|
gate_out = gate_out.view(-1, 1)
|
|
mel_loss = nn.MSELoss()(mel_out, mel_target) + \
|
|
nn.MSELoss()(mel_out_postnet, mel_target)
|
|
gate_loss = nn.BCEWithLogitsLoss()(gate_out, gate_target)
|
|
self.last_mel_loss = mel_loss.detach().clone().mean().item()
|
|
self.last_gate_loss = gate_loss.detach().clone().mean().item()
|
|
return mel_loss + gate_loss
|
|
|
|
def extra_metrics(self):
|
|
return {
|
|
'mel_loss': self.last_mel_loss,
|
|
'gate_loss': self.last_gate_loss
|
|
} |