DL-Art-School/codes/utils/util.py
2022-02-10 22:55:46 -07:00

511 lines
17 KiB
Python

import os
import sys
import time
import math
import torch.nn.functional as F
from datetime import datetime
import random
import logging
from collections import OrderedDict
import numpy as np
import cv2
import torch
from torchvision.utils import make_grid
from shutil import get_terminal_size
import scp
import paramiko
from torch.utils.checkpoint import checkpoint
from torch._six import inf
import yaml
from trainer import networks
try:
from yaml import CLoader as Loader, CDumper as Dumper
except ImportError:
from yaml import Loader, Dumper
loaded_options = None
def OrderedYaml():
'''yaml orderedDict support'''
_mapping_tag = yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG
def dict_representer(dumper, data):
return dumper.represent_dict(data.items())
def dict_constructor(loader, node):
return OrderedDict(loader.construct_pairs(node))
Dumper.add_representer(OrderedDict, dict_representer)
Loader.add_constructor(_mapping_tag, dict_constructor)
return Loader, Dumper
####################
# miscellaneous
####################
# Conditionally uses torch's checkpoint functionality if it is enabled in the opt file.
def checkpoint(fn, *args):
if loaded_options is None:
enabled = False
else:
enabled = loaded_options['checkpointing_enabled'] if 'checkpointing_enabled' in loaded_options.keys() else True
if enabled:
return torch.utils.checkpoint.checkpoint(fn, *args)
else:
return fn(*args)
def sequential_checkpoint(fn, partitions, *args):
if loaded_options is None:
enabled = False
else:
enabled = loaded_options['checkpointing_enabled'] if 'checkpointing_enabled' in loaded_options.keys() else True
if enabled:
return torch.utils.checkpoint.checkpoint_sequential(fn, partitions, *args)
else:
return fn(*args)
# A fancy alternative to if <flag> checkpoint() else <call>
def possible_checkpoint(opt_en, fn, *args):
if loaded_options is None:
enabled = False
else:
enabled = loaded_options['checkpointing_enabled'] if 'checkpointing_enabled' in loaded_options.keys() else True
if enabled and opt_en:
return torch.utils.checkpoint.checkpoint(fn, *args)
else:
return fn(*args)
def get_timestamp():
return datetime.now().strftime('%y%m%d-%H%M%S')
def mkdir(path):
if not os.path.exists(path):
os.makedirs(path)
def mkdirs(paths):
if isinstance(paths, str):
mkdir(paths)
else:
for path in paths:
mkdir(path)
def mkdir_and_rename(path):
if os.path.exists(path):
new_name = path + '_archived_' + get_timestamp()
print('Path already exists. Rename it to [{:s}]'.format(new_name))
logger = logging.getLogger('base')
logger.info('Path already exists. Rename it to [{:s}]'.format(new_name))
os.rename(path, new_name)
os.makedirs(path)
def set_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def setup_logger(logger_name, root, phase, level=logging.INFO, screen=False, tofile=False):
'''set up logger'''
lg = logging.getLogger(logger_name)
formatter = logging.Formatter('%(asctime)s.%(msecs)03d - %(levelname)s: %(message)s',
datefmt='%y-%m-%d %H:%M:%S')
lg.setLevel(level)
if tofile:
log_file = os.path.join(root, phase + '_{}.log'.format(get_timestamp()))
fh = logging.FileHandler(log_file, mode='w')
fh.setFormatter(formatter)
lg.addHandler(fh)
if screen:
sh = logging.StreamHandler()
sh.setFormatter(formatter)
lg.addHandler(sh)
def copy_files_to_server(host, user, password, files, remote_path):
client = paramiko.SSHClient()
client.load_system_host_keys()
client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
client.connect(host, username=user, password=password)
scpclient = scp.SCPClient(client.get_transport())
scpclient.put(files, remote_path)
def get_files_from_server(host, user, password, remote_path, local_path):
client = paramiko.SSHClient()
client.load_system_host_keys()
client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
client.connect(host, username=user, password=password)
scpclient = scp.SCPClient(client.get_transport())
scpclient.get(remote_path, local_path)
####################
# image convert
####################
def crop_border(img_list, crop_border):
"""Crop borders of images
Args:
img_list (list [Numpy]): HWC
crop_border (int): crop border for each end of height and weight
Returns:
(list [Numpy]): cropped image list
"""
if crop_border == 0:
return img_list
else:
return [v[crop_border:-crop_border, crop_border:-crop_border] for v in img_list]
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
'''
Converts a torch Tensor into an image Numpy array
Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
'''
tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # clamp
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
n_dim = tensor.dim()
if n_dim == 4:
n_img = len(tensor)
img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
elif n_dim == 3:
img_np = tensor.numpy()
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
elif n_dim == 2:
img_np = tensor.numpy()
else:
raise TypeError(
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
if out_type == np.uint8:
img_np = (img_np * 255.0).round()
# Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
return img_np.astype(out_type)
def save_img(img, img_path, mode='RGB'):
cv2.imwrite(img_path, img)
def DUF_downsample(x, scale=4):
"""Downsamping with Gaussian kernel used in the DUF official code
Args:
x (Tensor, [B, T, C, H, W]): frames to be downsampled.
scale (int): downsampling factor: 2 | 3 | 4.
"""
assert scale in [2, 3, 4], 'Scale [{}] is not supported'.format(scale)
def gkern(kernlen=13, nsig=1.6):
import scipy.ndimage.filters as fi
inp = np.zeros((kernlen, kernlen))
# set element at the middle to one, a dirac delta
inp[kernlen // 2, kernlen // 2] = 1
# gaussian-smooth the dirac, resulting in a gaussian filter mask
return fi.gaussian_filter(inp, nsig)
B, T, C, H, W = x.size()
x = x.view(-1, 1, H, W)
pad_w, pad_h = 6 + scale * 2, 6 + scale * 2 # 6 is the pad of the gaussian filter
r_h, r_w = 0, 0
if scale == 3:
r_h = 3 - (H % 3)
r_w = 3 - (W % 3)
x = F.pad(x, [pad_w, pad_w + r_w, pad_h, pad_h + r_h], 'reflect')
gaussian_filter = torch.from_numpy(gkern(13, 0.4 * scale)).type_as(x).unsqueeze(0).unsqueeze(0)
x = F.conv2d(x, gaussian_filter, stride=scale)
x = x[:, :, 2:-2, 2:-2]
x = x.view(B, T, C, x.size(2), x.size(3))
return x
def single_forward(model, inp):
"""PyTorch model forward (single test), it is just a simple warpper
Args:
model (PyTorch model)
inp (Tensor): inputs defined by the model
Returns:
output (Tensor): outputs of the model. float, in CPU
"""
with torch.no_grad():
model_output = model(inp)
if isinstance(model_output, list) or isinstance(model_output, tuple):
output = model_output[0]
else:
output = model_output
output = output.data.float().cpu()
return output
def flipx4_forward(model, inp):
"""Flip testing with X4 self ensemble, i.e., normal, flip H, flip W, flip H and W
Args:
model (PyTorch model)
inp (Tensor): inputs defined by the model
Returns:
output (Tensor): outputs of the model. float, in CPU
"""
# normal
output_f = single_forward(model, inp)
# flip W
output = single_forward(model, torch.flip(inp, (-1, )))
output_f = output_f + torch.flip(output, (-1, ))
# flip H
output = single_forward(model, torch.flip(inp, (-2, )))
output_f = output_f + torch.flip(output, (-2, ))
# flip both H and W
output = single_forward(model, torch.flip(inp, (-2, -1)))
output_f = output_f + torch.flip(output, (-2, -1))
return output_f / 4
####################
# metric
####################
def calculate_psnr(img1, img2):
# img1 and img2 have range [0, 255]
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
mse = np.mean((img1 - img2)**2)
if mse == 0:
return float('inf')
return 20 * math.log10(255.0 / math.sqrt(mse))
def ssim(img1, img2):
C1 = (0.01 * 255)**2
C2 = (0.03 * 255)**2
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
kernel = cv2.getGaussianKernel(11, 1.5)
window = np.outer(kernel, kernel.transpose())
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
mu1_sq = mu1**2
mu2_sq = mu2**2
mu1_mu2 = mu1 * mu2
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
(sigma1_sq + sigma2_sq + C2))
return ssim_map.mean()
def calculate_ssim(img1, img2):
'''calculate SSIM
the same outputs as MATLAB's
img1, img2: [0, 255]
'''
if not img1.shape == img2.shape:
raise ValueError('Input images must have the same dimensions.')
if img1.ndim == 2:
return ssim(img1, img2)
elif img1.ndim == 3:
if img1.shape[2] == 3:
ssims = []
for i in range(3):
ssims.append(ssim(img1, img2))
return np.array(ssims).mean()
elif img1.shape[2] == 1:
return ssim(np.squeeze(img1), np.squeeze(img2))
else:
raise ValueError('Wrong input image dimensions.')
class ProgressBar(object):
'''A progress bar which can print the progress
modified from https://github.com/hellock/cvbase/blob/master/cvbase/progress.py
'''
def __init__(self, task_num=0, bar_width=50, start=True):
self.task_num = task_num
max_bar_width = self._get_max_bar_width()
self.bar_width = (bar_width if bar_width <= max_bar_width else max_bar_width)
self.completed = 0
if start:
self.start()
def _get_max_bar_width(self):
terminal_width, _ = get_terminal_size()
max_bar_width = min(int(terminal_width * 0.6), terminal_width - 50)
if max_bar_width < 10:
print('terminal width is too small ({}), please consider widen the terminal for better '
'progressbar visualization'.format(terminal_width))
max_bar_width = 10
return max_bar_width
def start(self):
if self.task_num > 0:
sys.stdout.write('[{}] 0/{}, elapsed: 0s, ETA:\n{}\n'.format(
' ' * self.bar_width, self.task_num, 'Start...'))
else:
sys.stdout.write('completed: 0, elapsed: 0s')
sys.stdout.flush()
self.start_time = time.time()
def update(self, msg='In progress...'):
self.completed += 1
elapsed = time.time() - self.start_time
fps = self.completed / elapsed
if self.task_num > 0:
percentage = self.completed / float(self.task_num)
eta = int(elapsed * (1 - percentage) / percentage + 0.5)
mark_width = int(self.bar_width * percentage)
bar_chars = '>' * mark_width + '-' * (self.bar_width - mark_width)
sys.stdout.write('\033[2F') # cursor up 2 lines
sys.stdout.write('\033[J') # clean the output (remove extra chars since last display)
sys.stdout.write('[{}] {}/{}, {:.1f} task/s, elapsed: {}s, ETA: {:5}s\n{}\n'.format(
bar_chars, self.completed, self.task_num, fps, int(elapsed + 0.5), eta, msg))
else:
sys.stdout.write('completed: {}, elapsed: {}s, {:.1f} tasks/s'.format(
self.completed, int(elapsed + 0.5), fps))
sys.stdout.flush()
# Recursively detaches all tensors in a tree of lists, dicts and tuples and returns the same structure.
def recursively_detach(v):
if isinstance(v, torch.Tensor):
return v.detach().clone()
elif isinstance(v, list) or isinstance(v, tuple):
out = [recursively_detach(i) for i in v]
if isinstance(v, tuple):
return tuple(out)
return out
elif isinstance(v, dict):
out = {}
for k, t in v.items():
out[k] = recursively_detach(t)
return out
def opt_get(opt, keys, default=None):
assert not isinstance(keys, str) # Common mistake, better to assert.
if opt is None:
return default
ret = opt
for k in keys:
ret = ret.get(k, None)
if ret is None:
return default
return ret
def denormalize(x, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
ten = x.clone().permute(1, 2, 3, 0)
for t, m, s in zip(ten, mean, std):
t.mul_(s).add_(m)
return torch.clamp(ten, 0, 1).permute(3, 0, 1, 2)
def get_mask_from_lengths(lengths, max_len=None):
if max_len is None:
max_len = torch.max(lengths).item()
ids = torch.arange(0, max_len, out=torch.LongTensor(max_len)).to(lengths.device)
mask = (ids < lengths.unsqueeze(1)).bool()
return mask
def clip_grad_norm(parameters: list, parameter_names: list, max_norm: float, norm_type: float = 2.0) -> torch.Tensor:
r"""
Equivalent to torch.nn.utils.clip_grad_norm_() but with the following changes:
- Takes in a dictionary of parameters (from get_named_parameters()) instead of a list of parameters.
- When NaN or inf norms are encountered, the parameter name is printed.
- error_if_nonfinite removed.
Clips gradient norm of an iterable of parameters.
The norm is computed over all gradients together, as if they were
concatenated into a single vector. Gradients are modified in-place.
Args:
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
single Tensor that will have gradients normalized
max_norm (float or int): max norm of the gradients
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
infinity norm.
error_if_nonfinite (bool): if True, an error is thrown if the total
norm of the gradients from :attr:``parameters`` is ``nan``,
``inf``, or ``-inf``. Default: False (will switch to True in the future)
Returns:
Total norm of the parameters (viewed as a single vector).
"""
parameters = [p for p in parameters if p.grad is not None]
max_norm = float(max_norm)
norm_type = float(norm_type)
if len(parameters) == 0:
return torch.tensor(0.)
device = parameters[0].grad.device
if norm_type == inf:
norms = [p.grad.detach().abs().max().to(device) for p in parameters]
total_norm = norms[0] if len(norms) == 1 else torch.max(torch.stack(norms))
else:
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
clip_coef = max_norm / (total_norm + 1e-6)
if clip_coef < 1:
for p in parameters:
p.grad.detach().mul_(clip_coef.to(p.grad.device))
return total_norm
Loader, Dumper = OrderedYaml()
def load_model_from_config(cfg_file=None, model_name=None, also_load_savepoint=True, load_path=None,
preloaded_options=None, strict_load=True, device=None):
if preloaded_options is not None:
opt = preloaded_options
else:
with open(cfg_file, mode='r') as f:
opt = yaml.load(f, Loader=Loader)
if model_name is None:
model_cfg = opt['networks'].values()
model_name = next(opt['networks'].keys())
else:
model_cfg = opt['networks'][model_name]
if 'which_model_G' in model_cfg.keys() and 'which_model' not in model_cfg.keys():
model_cfg['which_model'] = model_cfg['which_model_G']
model = networks.create_model(opt, model_cfg).to(device)
if also_load_savepoint and f'pretrain_model_{model_name}' in opt['path'].keys():
assert load_path is None
load_path = opt['path'][f'pretrain_model_{model_name}']
if load_path is not None:
print(f"Loading from {load_path}")
sd = torch.load(load_path, map_location=device)
model.load_state_dict(sd, strict=strict_load)
return model
# Mapper for torch.load() that maps cuda devices to the correct CUDA device, but leaves CPU devices alone.
def map_cuda_to_correct_device(storage, loc):
if str(loc).startswith('cuda'):
return storage.cuda(torch.cuda.current_device())
else:
return storage.cpu()
def ceil_multiple(base, multiple):
"""
Returns the next closest multiple >= base.
"""
res = base % multiple
if res == 0:
return base
return base + (multiple - res)