forked from mrq/DL-Art-School
167 lines
6.5 KiB
Python
167 lines
6.5 KiB
Python
import logging
|
|
from collections import OrderedDict
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn.parallel import DataParallel, DistributedDataParallel
|
|
import models.networks as networks
|
|
import models.lr_scheduler as lr_scheduler
|
|
from .base_model import BaseModel
|
|
from models.loss import CharbonnierLoss
|
|
|
|
logger = logging.getLogger('base')
|
|
|
|
|
|
class VideoBaseModel(BaseModel):
|
|
def __init__(self, opt):
|
|
super(VideoBaseModel, self).__init__(opt)
|
|
|
|
if opt['dist']:
|
|
self.rank = torch.distributed.get_rank()
|
|
else:
|
|
self.rank = -1 # non dist training
|
|
train_opt = opt['train']
|
|
|
|
# define network and load pretrained models
|
|
self.netG = networks.define_G(opt).to(self.device)
|
|
if opt['dist']:
|
|
self.netG = DistributedDataParallel(self.netG, device_ids=[torch.cuda.current_device()])
|
|
else:
|
|
self.netG = DataParallel(self.netG)
|
|
# print network
|
|
self.print_network()
|
|
self.load()
|
|
|
|
if self.is_train:
|
|
self.netG.train()
|
|
|
|
#### loss
|
|
loss_type = train_opt['pixel_criterion']
|
|
if loss_type == 'l1':
|
|
self.cri_pix = nn.L1Loss(reduction='sum').to(self.device)
|
|
elif loss_type == 'l2':
|
|
self.cri_pix = nn.MSELoss(reduction='sum').to(self.device)
|
|
elif loss_type == 'cb':
|
|
self.cri_pix = CharbonnierLoss().to(self.device)
|
|
else:
|
|
raise NotImplementedError('Loss type [{:s}] is not recognized.'.format(loss_type))
|
|
self.l_pix_w = train_opt['pixel_weight']
|
|
|
|
#### optimizers
|
|
wd_G = train_opt['weight_decay_G'] if train_opt['weight_decay_G'] else 0
|
|
if train_opt['ft_tsa_only']:
|
|
normal_params = []
|
|
tsa_fusion_params = []
|
|
for k, v in self.netG.named_parameters():
|
|
if v.requires_grad:
|
|
if 'tsa_fusion' in k:
|
|
tsa_fusion_params.append(v)
|
|
else:
|
|
normal_params.append(v)
|
|
else:
|
|
if self.rank <= 0:
|
|
logger.warning('Params [{:s}] will not optimize.'.format(k))
|
|
optim_params = [
|
|
{ # add normal params first
|
|
'params': normal_params,
|
|
'lr': train_opt['lr_G']
|
|
},
|
|
{
|
|
'params': tsa_fusion_params,
|
|
'lr': train_opt['lr_G']
|
|
},
|
|
]
|
|
else:
|
|
optim_params = []
|
|
for k, v in self.netG.named_parameters():
|
|
if v.requires_grad:
|
|
optim_params.append(v)
|
|
else:
|
|
if self.rank <= 0:
|
|
logger.warning('Params [{:s}] will not optimize.'.format(k))
|
|
|
|
self.optimizer_G = torch.optim.Adam(optim_params, lr=train_opt['lr_G'],
|
|
weight_decay=wd_G,
|
|
betas=(train_opt['beta1'], train_opt['beta2']))
|
|
self.optimizers.append(self.optimizer_G)
|
|
|
|
#### schedulers
|
|
if train_opt['lr_scheme'] == 'MultiStepLR':
|
|
for optimizer in self.optimizers:
|
|
self.schedulers.append(
|
|
lr_scheduler.MultiStepLR_Restart(optimizer, train_opt['lr_steps'],
|
|
restarts=train_opt['restarts'],
|
|
weights=train_opt['restart_weights'],
|
|
gamma=train_opt['lr_gamma'],
|
|
clear_state=train_opt['clear_state']))
|
|
elif train_opt['lr_scheme'] == 'CosineAnnealingLR_Restart':
|
|
for optimizer in self.optimizers:
|
|
self.schedulers.append(
|
|
lr_scheduler.CosineAnnealingLR_Restart(
|
|
optimizer, train_opt['T_period'], eta_min=train_opt['eta_min'],
|
|
restarts=train_opt['restarts'], weights=train_opt['restart_weights']))
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
self.log_dict = OrderedDict()
|
|
|
|
def feed_data(self, data, need_GT=True):
|
|
self.var_L = data['LQs'].to(self.device)
|
|
if need_GT:
|
|
self.real_H = data['GT'].to(self.device)
|
|
|
|
def set_params_lr_zero(self):
|
|
# fix normal module
|
|
self.optimizers[0].param_groups[0]['lr'] = 0
|
|
|
|
def optimize_parameters(self, step):
|
|
if self.opt['train']['ft_tsa_only'] and step < self.opt['train']['ft_tsa_only']:
|
|
self.set_params_lr_zero()
|
|
|
|
self.optimizer_G.zero_grad()
|
|
self.fake_H = self.netG(self.var_L)
|
|
|
|
l_pix = self.l_pix_w * self.cri_pix(self.fake_H, self.real_H)
|
|
l_pix.backward()
|
|
self.optimizer_G.step()
|
|
|
|
# set log
|
|
self.log_dict['l_pix'] = l_pix.item()
|
|
|
|
def test(self):
|
|
self.netG.eval()
|
|
with torch.no_grad():
|
|
self.fake_H = self.netG(self.var_L)
|
|
self.netG.train()
|
|
|
|
def get_current_log(self):
|
|
return self.log_dict
|
|
|
|
def get_current_visuals(self, need_GT=True):
|
|
out_dict = OrderedDict()
|
|
out_dict['LQ'] = self.var_L.detach()[0].float().cpu()
|
|
out_dict['rlt'] = self.fake_H.detach()[0].float().cpu()
|
|
if need_GT:
|
|
out_dict['GT'] = self.real_H.detach()[0].float().cpu()
|
|
return out_dict
|
|
|
|
def print_network(self):
|
|
s, n = self.get_network_description(self.netG)
|
|
if isinstance(self.netG, nn.DataParallel):
|
|
net_struc_str = '{} - {}'.format(self.netG.__class__.__name__,
|
|
self.netG.module.__class__.__name__)
|
|
else:
|
|
net_struc_str = '{}'.format(self.netG.__class__.__name__)
|
|
if self.rank <= 0:
|
|
logger.info('Network G structure: {}, with parameters: {:,d}'.format(net_struc_str, n))
|
|
logger.info(s)
|
|
|
|
def load(self):
|
|
load_path_G = self.opt['path']['pretrain_model_G']
|
|
if load_path_G is not None:
|
|
logger.info('Loading model for G [{:s}] ...'.format(load_path_G))
|
|
self.load_network(load_path_G, self.netG, self.opt['path']['strict_load'])
|
|
|
|
def save(self, iter_label):
|
|
self.save_network(self.netG, 'G', iter_label)
|