DL-Art-School/codes/scripts/audio/use_discrete_vocoder.py
2021-12-09 22:59:56 -07:00

47 lines
2.4 KiB
Python

import argparse
import torchaudio
from data.audio.unsupervised_audio_dataset import load_audio
from scripts.audio.speech_synthesis_utils import do_spectrogram_diffusion, \
load_discrete_vocoder_diffuser, wav_to_mel, convert_mel_to_codes
from utils.audio import plot_spectrogram
from utils.util import load_model_from_config
def roundtrip_vocoding(dvae, vocoder, diffuser, clip, cond=None, plot_spec=False):
clip = clip.unsqueeze(0)
if cond is None:
cond = clip
else:
cond = cond.unsqueeze(0)
mel = wav_to_mel(clip)
if plot_spec:
plot_spectrogram(mel[0].cpu())
codes = convert_mel_to_codes(dvae, mel)
return do_spectrogram_diffusion(vocoder, dvae, diffuser, codes, cond, spectrogram_compression_factor=128, plt_spec=plot_spec, am=mel)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to options YAML file used to train the diffusion model', default='X:\\dlas\\experiments\\train_diffusion_vocoder_with_cond_new_dvae.yml')
parser.add_argument('-diffusion_model_name', type=str, help='Name of the diffusion model in opt.', default='generator')
parser.add_argument('-diffusion_model_path', type=str, help='Name of the diffusion model in opt.', default='X:\\dlas\\experiments\\train_diffusion_vocoder_with_cond_new_dvae\\models\\6200_generator_ema.pth')
parser.add_argument('-dvae_model_name', type=str, help='Name of the DVAE model in opt.', default='dvae')
parser.add_argument('-input_file', type=str, help='Path to the input audio file.', default='Z:\\clips\\books1\\3_dchha04 Romancing The Tribes\\00036.wav')
parser.add_argument('-cond', type=str, help='Path to the conditioning input audio file.', default=None)
args = parser.parse_args()
print("Loading DVAE..")
dvae = load_model_from_config(args.opt, args.dvae_model_name)
print("Loading Diffusion Model..")
diffusion = load_model_from_config(args.opt, args.diffusion_model_name, also_load_savepoint=False, load_path=args.diffusion_model_path)
print("Loading data..")
diffuser = load_discrete_vocoder_diffuser()
inp = load_audio(args.input_file, 22050).cuda()
cond = None if args.cond is None else load_audio(args.cond, 22050).cuda()
print("Performing inference..")
roundtripped = roundtrip_vocoding(dvae, diffusion, diffuser, inp, cond).cpu()
torchaudio.save('roundtrip_vocoded_output.wav', roundtripped.squeeze(0), 10025)