DL-Art-School/codes/models/networks.py
James Betker 0b7193392f Implement unet disc
The latest discriminator architecture was already pretty much a unet. This
one makes that official and uses shared layers. It also upsamples one additional
time and throws out the lowest upsampling result.

The intent is to delete the old vgg pixdisc, but I'll keep it around for a bit since
I'm still trying out a few models with it.
2020-07-10 16:24:42 -06:00

138 lines
10 KiB
Python

import torch
import models.archs.SRResNet_arch as SRResNet_arch
import models.archs.discriminator_vgg_arch as SRGAN_arch
import models.archs.DiscriminatorResnet_arch as DiscriminatorResnet_arch
import models.archs.DiscriminatorResnet_arch_passthrough as DiscriminatorResnet_arch_passthrough
import models.archs.FlatProcessorNetNew_arch as FlatProcessorNetNew_arch
import models.archs.RRDBNet_arch as RRDBNet_arch
import models.archs.HighToLowResNet as HighToLowResNet
import models.archs.NestedSwitchGenerator as ng
import models.archs.feature_arch as feature_arch
import models.archs.SwitchedResidualGenerator_arch as SwitchedGen_arch
import models.archs.SRG1_arch as srg1
import functools
# Generator
def define_G(opt, net_key='network_G'):
opt_net = opt[net_key]
which_model = opt_net['which_model_G']
scale = opt['scale']
# image restoration
if which_model == 'MSRResNet':
netG = SRResNet_arch.MSRResNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'],
nf=opt_net['nf'], nb=opt_net['nb'], upscale=opt_net['scale'])
elif which_model == 'RRDBNet':
# RRDB does scaling in two steps, so take the sqrt of the scale we actually want to achieve and feed it to RRDB.
initial_stride = 1 if 'initial_stride' not in opt_net else opt_net['initial_stride']
assert initial_stride == 1 or initial_stride == 2
# Need to adjust the scale the generator sees by the stride since the stride causes a down-sample.
gen_scale = scale * initial_stride
netG = RRDBNet_arch.RRDBNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'],
nf=opt_net['nf'], nb=opt_net['nb'], scale=gen_scale, initial_stride=initial_stride)
elif which_model == 'AssistedRRDBNet':
netG = RRDBNet_arch.AssistedRRDBNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'],
nf=opt_net['nf'], nb=opt_net['nb'], scale=scale)
elif which_model == 'LowDimRRDBNet':
gen_scale = scale * opt_net['initial_stride']
rrdb = functools.partial(RRDBNet_arch.LowDimRRDB, nf=opt_net['nf'], gc=opt_net['gc'], dimensional_adjustment=opt_net['dim'])
netG = RRDBNet_arch.RRDBNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'],
nf=opt_net['nf'], nb=opt_net['nb'], scale=gen_scale, rrdb_block_f=rrdb, initial_stride=opt_net['initial_stride'])
elif which_model == 'PixRRDBNet':
block_f = None
if opt_net['attention']:
block_f = functools.partial(RRDBNet_arch.SwitchedRRDB, nf=opt_net['nf'], gc=opt_net['gc'],
init_temperature=opt_net['temperature'],
final_temperature_step=opt_net['temperature_final_step'])
if opt_net['mhattention']:
block_f = functools.partial(RRDBNet_arch.SwitchedMultiHeadRRDB, num_convs=8, num_heads=2, nf=opt_net['nf'], gc=opt_net['gc'],
init_temperature=opt_net['temperature'],
final_temperature_step=opt_net['temperature_final_step'])
netG = RRDBNet_arch.PixShuffleRRDB(nf=opt_net['nf'], nb=opt_net['nb'], gc=opt_net['gc'], scale=scale, rrdb_block_f=block_f)
elif which_model == "ConfigurableSwitchedResidualGenerator":
netG = srg1.ConfigurableSwitchedResidualGenerator(switch_filters=opt_net['switch_filters'], switch_growths=opt_net['switch_growths'],
switch_reductions=opt_net['switch_reductions'],
switch_processing_layers=opt_net['switch_processing_layers'], trans_counts=opt_net['trans_counts'],
trans_kernel_sizes=opt_net['trans_kernel_sizes'], trans_layers=opt_net['trans_layers'],
trans_filters_mid=opt_net['trans_filters_mid'],
initial_temp=opt_net['temperature'], final_temperature_step=opt_net['temperature_final_step'],
heightened_temp_min=opt_net['heightened_temp_min'], heightened_final_step=opt_net['heightened_final_step'],
upsample_factor=scale, add_scalable_noise_to_transforms=opt_net['add_noise'])
elif which_model == "ConfigurableSwitchedResidualGenerator2":
netG = SwitchedGen_arch.ConfigurableSwitchedResidualGenerator2(switch_depth=opt_net['switch_depth'], switch_filters=opt_net['switch_filters'],
switch_reductions=opt_net['switch_reductions'],
switch_processing_layers=opt_net['switch_processing_layers'], trans_counts=opt_net['trans_counts'],
trans_kernel_sizes=opt_net['trans_kernel_sizes'], trans_layers=opt_net['trans_layers'],
transformation_filters=opt_net['transformation_filters'],
initial_temp=opt_net['temperature'], final_temperature_step=opt_net['temperature_final_step'],
heightened_temp_min=opt_net['heightened_temp_min'], heightened_final_step=opt_net['heightened_final_step'],
upsample_factor=scale, add_scalable_noise_to_transforms=opt_net['add_noise'])
elif which_model == "ConfigurableSwitchedResidualGenerator3":
netG = SwitchedGen_arch.ConfigurableSwitchedResidualGenerator3(base_filters=opt_net['base_filters'], trans_count=opt_net['trans_count'])
elif which_model == "NestedSwitchGenerator":
netG = ng.NestedSwitchedGenerator(switch_filters=opt_net['switch_filters'],
switch_reductions=opt_net['switch_reductions'],
switch_processing_layers=opt_net['switch_processing_layers'], trans_counts=opt_net['trans_counts'],
trans_kernel_sizes=opt_net['trans_kernel_sizes'], trans_layers=opt_net['trans_layers'],
transformation_filters=opt_net['transformation_filters'],
initial_temp=opt_net['temperature'], final_temperature_step=opt_net['temperature_final_step'],
heightened_temp_min=opt_net['heightened_temp_min'], heightened_final_step=opt_net['heightened_final_step'],
upsample_factor=scale, add_scalable_noise_to_transforms=opt_net['add_noise'])
# image corruption
elif which_model == 'HighToLowResNet':
netG = HighToLowResNet.HighToLowResNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'],
nf=opt_net['nf'], nb=opt_net['nb'], downscale=opt_net['scale'])
elif which_model == 'FlatProcessorNet':
'''netG = FlatProcessorNet_arch.FlatProcessorNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'],
nf=opt_net['nf'], downscale=opt_net['scale'], reduce_anneal_blocks=opt_net['ra_blocks'],
assembler_blocks=opt_net['assembler_blocks'])'''
netG = FlatProcessorNetNew_arch.fixup_resnet34(num_filters=opt_net['nf'])\
else:
raise NotImplementedError('Generator model [{:s}] not recognized'.format(which_model))
return netG
# Discriminator
def define_D(opt):
img_sz = opt['datasets']['train']['target_size']
opt_net = opt['network_D']
which_model = opt_net['which_model_D']
if which_model == 'discriminator_vgg_128':
netD = SRGAN_arch.Discriminator_VGG_128(in_nc=opt_net['in_nc'], nf=opt_net['nf'], input_img_factor=img_sz // 128, extra_conv=opt_net['extra_conv'])
elif which_model == 'discriminator_resnet':
netD = DiscriminatorResnet_arch.fixup_resnet34(num_filters=opt_net['nf'], num_classes=1, input_img_size=img_sz)
elif which_model == 'discriminator_resnet_passthrough':
netD = DiscriminatorResnet_arch_passthrough.fixup_resnet34(num_filters=opt_net['nf'], num_classes=1, input_img_size=img_sz,
number_skips=opt_net['number_skips'], use_bn=True,
disable_passthrough=opt_net['disable_passthrough'])
elif which_model == 'discriminator_pix':
netD = SRGAN_arch.Discriminator_VGG_PixLoss(in_nc=opt_net['in_nc'], nf=opt_net['nf'])
elif which_model == "discriminator_unet":
netD = SRGAN_arch.Discriminator_UNet(in_nc=opt_net['in_nc'], nf=opt_net['nf'])
else:
raise NotImplementedError('Discriminator model [{:s}] not recognized'.format(which_model))
return netD
# Define network used for perceptual loss
def define_F(opt, use_bn=False):
gpu_ids = opt['gpu_ids']
device = torch.device('cuda' if gpu_ids else 'cpu')
if 'which_model_F' not in opt['train'].keys() or opt['train']['which_model_F'] == 'vgg':
# PyTorch pretrained VGG19-54, before ReLU.
if use_bn:
feature_layer = 49
else:
feature_layer = 34
netF = feature_arch.VGGFeatureExtractor(feature_layer=feature_layer, use_bn=use_bn,
use_input_norm=True, device=device)
elif opt['train']['which_model_F'] == 'wide_resnet':
netF = feature_arch.WideResnetFeatureExtractor(use_input_norm=True, device=device)
netF.eval() # No need to train
return netF