forked from mrq/DL-Art-School
24792bdb4f
Removed a lot of legacy stuff I have no intent on using again. Plan is to shape this repo into something more extensible (get it? hah!)
193 lines
8.9 KiB
Python
193 lines
8.9 KiB
Python
from utils.loss_accumulator import LossAccumulator
|
|
from torch.nn import Module
|
|
import logging
|
|
from models.steps.losses import create_loss
|
|
import torch
|
|
from apex import amp
|
|
from collections import OrderedDict
|
|
from .injectors import create_injector
|
|
from utils.util import recursively_detach
|
|
|
|
logger = logging.getLogger('base')
|
|
|
|
|
|
# Defines the expected API for a single training step
|
|
class ConfigurableStep(Module):
|
|
|
|
def __init__(self, opt_step, env):
|
|
super(ConfigurableStep, self).__init__()
|
|
|
|
self.step_opt = opt_step
|
|
self.env = env
|
|
self.opt = env['opt']
|
|
self.gen_outputs = opt_step['generator_outputs']
|
|
self.loss_accumulator = LossAccumulator()
|
|
self.optimizers = None
|
|
|
|
self.injectors = []
|
|
if 'injectors' in self.step_opt.keys():
|
|
injector_names = []
|
|
for inj_name, injector in self.step_opt['injectors'].items():
|
|
assert inj_name not in injector_names # Repeated names are always an error case.
|
|
injector_names.append(inj_name)
|
|
self.injectors.append(create_injector(injector, env))
|
|
|
|
losses = []
|
|
self.weights = {}
|
|
if 'losses' in self.step_opt.keys():
|
|
for loss_name, loss in self.step_opt['losses'].items():
|
|
assert loss_name not in self.weights.keys() # Repeated names are always an error case.
|
|
losses.append((loss_name, create_loss(loss, env)))
|
|
self.weights[loss_name] = loss['weight']
|
|
self.losses = OrderedDict(losses)
|
|
|
|
def get_network_for_name(self, name):
|
|
return self.env['generators'][name] if name in self.env['generators'].keys() \
|
|
else self.env['discriminators'][name]
|
|
|
|
# Subclasses should override this to define individual optimizers. They should all go into self.optimizers.
|
|
# This default implementation defines a single optimizer for all Generator parameters.
|
|
# Must be called after networks are initialized and wrapped.
|
|
def define_optimizers(self):
|
|
training = self.step_opt['training']
|
|
if isinstance(training, list):
|
|
self.training_net = [self.get_network_for_name(t) for t in training]
|
|
opt_configs = [self.step_opt['optimizer_params'][t] for t in training]
|
|
nets = self.training_net
|
|
else:
|
|
self.training_net = self.get_network_for_name(training)
|
|
# When only training one network, optimizer params can just embedded in the step params.
|
|
if 'optimizer_params' not in self.step_opt.keys():
|
|
opt_configs = [self.step_opt]
|
|
else:
|
|
opt_configs = [self.step_opt['optimizer_params']]
|
|
nets = [self.training_net]
|
|
self.optimizers = []
|
|
for net, opt_config in zip(nets, opt_configs):
|
|
optim_params = []
|
|
for k, v in net.named_parameters(): # can optimize for a part of the model
|
|
if v.requires_grad:
|
|
optim_params.append(v)
|
|
else:
|
|
if self.env['rank'] <= 0:
|
|
logger.warning('Params [{:s}] will not optimize.'.format(k))
|
|
|
|
if 'optimizer' not in self.step_opt.keys() or self.step_opt['optimizer'] == 'adam':
|
|
opt = torch.optim.Adam(optim_params, lr=opt_config['lr'],
|
|
weight_decay=opt_config['weight_decay'],
|
|
betas=(opt_config['beta1'], opt_config['beta2']))
|
|
elif self.step_opt['optimizer'] == 'novograd':
|
|
opt = NovoGrad(optim_params, lr=opt_config['lr'], weight_decay=opt_config['weight_decay'],
|
|
betas=(opt_config['beta1'], opt_config['beta2']))
|
|
opt._config = opt_config # This is a bit seedy, but we will need these configs later.
|
|
self.optimizers.append(opt)
|
|
|
|
# Returns all optimizers used in this step.
|
|
def get_optimizers(self):
|
|
assert self.optimizers is not None
|
|
return self.optimizers
|
|
|
|
# Returns optimizers which are opting in for default LR scheduling.
|
|
def get_optimizers_with_default_scheduler(self):
|
|
assert self.optimizers is not None
|
|
return self.optimizers
|
|
|
|
# Returns the names of the networks this step will train. Other networks will be frozen.
|
|
def get_networks_trained(self):
|
|
if isinstance(self.step_opt['training'], list):
|
|
return self.step_opt['training']
|
|
else:
|
|
return [self.step_opt['training']]
|
|
|
|
def get_training_network_name(self):
|
|
if isinstance(self.step_opt['training'], list):
|
|
return self.step_opt['training'][0]
|
|
else:
|
|
return self.step_opt['training']
|
|
|
|
# Performs all forward and backward passes for this step given an input state. All input states are lists of
|
|
# chunked tensors. Use grad_accum_step to dereference these steps. Should return a dict of tensors that later
|
|
# steps might use. These tensors are automatically detached and accumulated into chunks.
|
|
def do_forward_backward(self, state, grad_accum_step, amp_loss_id, train=True):
|
|
new_state = {}
|
|
|
|
# Prepare a de-chunked state dict which will be used for the injectors & losses.
|
|
local_state = {}
|
|
for k, v in state.items():
|
|
local_state[k] = v[grad_accum_step]
|
|
local_state.update(new_state)
|
|
local_state['train_nets'] = str(self.get_networks_trained())
|
|
|
|
# Some losses compute backward() internally. Accomodate this by stashing the amp_loss_id in env.
|
|
self.env['amp_loss_id'] = amp_loss_id
|
|
self.env['current_step_optimizers'] = self.optimizers
|
|
self.env['training'] = train
|
|
|
|
# Inject in any extra dependencies.
|
|
for inj in self.injectors:
|
|
# Don't do injections tagged with eval unless we are not in train mode.
|
|
if train and 'eval' in inj.opt.keys() and inj.opt['eval']:
|
|
continue
|
|
# Likewise, don't do injections tagged with train unless we are not in eval.
|
|
if not train and 'train' in inj.opt.keys() and inj.opt['train']:
|
|
continue
|
|
# Don't do injections tagged with 'after' or 'before' when we are out of spec.
|
|
if 'after' in inj.opt.keys() and self.env['step'] < inj.opt['after'] or \
|
|
'before' in inj.opt.keys() and self.env['step'] > inj.opt['before']:
|
|
continue
|
|
injected = inj(local_state)
|
|
local_state.update(injected)
|
|
new_state.update(injected)
|
|
|
|
if train and len(self.losses) > 0:
|
|
# Finally, compute the losses.
|
|
total_loss = 0
|
|
for loss_name, loss in self.losses.items():
|
|
# Some losses only activate after a set number of steps. For example, proto-discriminator losses can
|
|
# be very disruptive to a generator.
|
|
if 'after' in loss.opt.keys() and loss.opt['after'] > self.env['step']:
|
|
continue
|
|
|
|
l = loss(self.training_net, local_state)
|
|
total_loss += l * self.weights[loss_name]
|
|
# Record metrics.
|
|
if isinstance(l, torch.Tensor):
|
|
self.loss_accumulator.add_loss(loss_name, l)
|
|
for n, v in loss.extra_metrics():
|
|
self.loss_accumulator.add_loss("%s_%s" % (loss_name, n), v)
|
|
loss.clear_metrics()
|
|
|
|
# In some cases, the loss could not be set (e.g. all losses have 'after'
|
|
if isinstance(total_loss, torch.Tensor):
|
|
self.loss_accumulator.add_loss("%s_total" % (self.get_training_network_name(),), total_loss)
|
|
# Scale the loss down by the accumulation factor.
|
|
total_loss = total_loss / self.env['mega_batch_factor']
|
|
|
|
# Get dem grads!
|
|
if self.env['amp']:
|
|
with amp.scale_loss(total_loss, self.optimizers, amp_loss_id) as scaled_loss:
|
|
scaled_loss.backward()
|
|
else:
|
|
total_loss.backward()
|
|
|
|
# Detach all state variables. Within the step, gradients can flow. Once these variables leave the step
|
|
# we must release the gradients.
|
|
new_state = recursively_detach(new_state)
|
|
return new_state
|
|
|
|
# Performs the optimizer step after all gradient accumulation is completed. Default implementation simply steps()
|
|
# all self.optimizers.
|
|
def do_step(self):
|
|
for opt in self.optimizers:
|
|
# Optimizers can be opted out in the early stages of training.
|
|
after = opt._config['after'] if 'after' in opt._config.keys() else 0
|
|
if self.env['step'] < after:
|
|
continue
|
|
before = opt._config['before'] if 'before' in opt._config.keys() else -1
|
|
if before != -1 and self.env['step'] > before:
|
|
continue
|
|
opt.step()
|
|
|
|
def get_metrics(self):
|
|
return self.loss_accumulator.as_dict()
|