forked from mrq/DL-Art-School
22 lines
662 B
Python
22 lines
662 B
Python
import torch
|
|
import torchvision
|
|
from PIL import Image
|
|
|
|
def load_img(path):
|
|
im = Image.open(path)
|
|
return torchvision.transforms.ToTensor()(im)
|
|
|
|
def save_img(t, path):
|
|
torchvision.utils.save_image(t, path)
|
|
|
|
img = load_img("me.png")
|
|
# add zeros to the imaginary component
|
|
img = torch.stack([img, torch.zeros_like(img)], dim=-1)
|
|
fft = torch.fft(img, signal_ndim=2)
|
|
fft_d = torch.zeros_like(fft)
|
|
for i in range(-5, 5):
|
|
diag = torch.diagonal(fft, offset=i, dim1=1, dim2=2)
|
|
diag_em = torch.diag_embed(diag, offset=i, dim1=1, dim2=2)
|
|
fft_d += diag_em
|
|
resamp_img = torch.ifft(fft_d, signal_ndim=2)[:, :, :, 0]
|
|
save_img(resamp_img, "resampled.png") |