forked from mrq/DL-Art-School
d9936df363
- Adds a script which preprocesses quantized mels given a DVAE - Adds a dataset which can consume preprocessed qmels - Reworks GPT TTS to consume the outputs of that dataset (removes logic to add padding and start/end tokens) - Adds inference to gpt_tts
160 lines
6.1 KiB
Python
160 lines
6.1 KiB
Python
import os
|
|
import random
|
|
import numpy as np
|
|
import torch
|
|
import torch.utils.data
|
|
from tqdm import tqdm
|
|
|
|
import models.tacotron2.layers as layers
|
|
from models.tacotron2.taco_utils import load_wav_to_torch, load_filepaths_and_text
|
|
|
|
from models.tacotron2.text import text_to_sequence
|
|
from utils.util import opt_get
|
|
|
|
|
|
class TextMelLoader(torch.utils.data.Dataset):
|
|
"""
|
|
1) loads audio,text pairs
|
|
2) normalizes text and converts them to sequences of one-hot vectors
|
|
3) computes mel-spectrograms from audio files.
|
|
"""
|
|
def __init__(self, hparams):
|
|
self.path = os.path.dirname(hparams['path'])
|
|
self.audiopaths_and_text = load_filepaths_and_text(hparams['path'])
|
|
self.text_cleaners = hparams.text_cleaners
|
|
self.max_wav_value = hparams.max_wav_value
|
|
self.sampling_rate = hparams.sampling_rate
|
|
self.load_mel_from_disk = hparams.load_mel_from_disk
|
|
self.return_wavs = opt_get(hparams, ['return_wavs'], False)
|
|
self.input_sample_rate = opt_get(hparams, ['input_sample_rate'], self.sampling_rate)
|
|
assert not (self.load_mel_from_disk and self.return_wavs)
|
|
self.stft = layers.TacotronSTFT(
|
|
hparams.filter_length, hparams.hop_length, hparams.win_length,
|
|
hparams.n_mel_channels, hparams.sampling_rate, hparams.mel_fmin,
|
|
hparams.mel_fmax)
|
|
random.seed(hparams.seed)
|
|
random.shuffle(self.audiopaths_and_text)
|
|
|
|
def get_mel_text_pair(self, audiopath_and_text):
|
|
# separate filename and text
|
|
audiopath, text = audiopath_and_text[0], audiopath_and_text[1]
|
|
audiopath = os.path.join(self.path, audiopath)
|
|
text = self.get_text(text)
|
|
mel = self.get_mel(audiopath)
|
|
return (text, mel, audiopath_and_text[0])
|
|
|
|
def get_mel(self, filename):
|
|
if not self.load_mel_from_disk:
|
|
audio, sampling_rate = load_wav_to_torch(filename)
|
|
if sampling_rate != self.input_sample_rate:
|
|
raise ValueError(f"Input sampling rate does not match specified rate {self.input_sample_rate}")
|
|
audio_norm = audio / self.max_wav_value
|
|
audio_norm = audio_norm.unsqueeze(0)
|
|
audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False)
|
|
if self.input_sample_rate != self.sampling_rate:
|
|
ratio = self.sampling_rate / self.input_sample_rate
|
|
audio_norm = torch.nn.functional.interpolate(audio_norm.unsqueeze(0), scale_factor=ratio, mode='area').squeeze(0)
|
|
if self.return_wavs:
|
|
melspec = audio_norm
|
|
else:
|
|
melspec = self.stft.mel_spectrogram(audio_norm)
|
|
melspec = torch.squeeze(melspec, 0)
|
|
else:
|
|
melspec = torch.from_numpy(np.load(filename))
|
|
assert melspec.size(0) == self.stft.n_mel_channels, (
|
|
'Mel dimension mismatch: given {}, expected {}'.format(
|
|
melspec.size(0), self.stft.n_mel_channels))
|
|
|
|
return melspec
|
|
|
|
def get_text(self, text):
|
|
text_norm = torch.IntTensor(text_to_sequence(text, self.text_cleaners))
|
|
return text_norm
|
|
|
|
def __getitem__(self, index):
|
|
return self.get_mel_text_pair(self.audiopaths_and_text[index])
|
|
|
|
def __len__(self):
|
|
return len(self.audiopaths_and_text)
|
|
|
|
|
|
class TextMelCollate():
|
|
""" Zero-pads model inputs and targets based on number of frames per setep
|
|
"""
|
|
def __init__(self, n_frames_per_step):
|
|
self.n_frames_per_step = n_frames_per_step
|
|
|
|
def __call__(self, batch):
|
|
"""Collate's training batch from normalized text and mel-spectrogram
|
|
PARAMS
|
|
------
|
|
batch: [text_normalized, mel_normalized, filename]
|
|
"""
|
|
# Right zero-pad all one-hot text sequences to max input length
|
|
input_lengths, ids_sorted_decreasing = torch.sort(
|
|
torch.LongTensor([len(x[0]) for x in batch]),
|
|
dim=0, descending=True)
|
|
max_input_len = input_lengths[0]
|
|
|
|
text_padded = torch.LongTensor(len(batch), max_input_len)
|
|
text_padded.zero_()
|
|
for i in range(len(ids_sorted_decreasing)):
|
|
text = batch[ids_sorted_decreasing[i]][0]
|
|
text_padded[i, :text.size(0)] = text
|
|
|
|
# Right zero-pad mel-spec
|
|
num_mels = batch[0][1].size(0)
|
|
max_target_len = max([x[1].size(1) for x in batch])
|
|
if max_target_len % self.n_frames_per_step != 0:
|
|
max_target_len += self.n_frames_per_step - max_target_len % self.n_frames_per_step
|
|
assert max_target_len % self.n_frames_per_step == 0
|
|
|
|
# include mel padded and gate padded
|
|
mel_padded = torch.FloatTensor(len(batch), num_mels, max_target_len)
|
|
mel_padded.zero_()
|
|
gate_padded = torch.FloatTensor(len(batch), max_target_len)
|
|
gate_padded.zero_()
|
|
output_lengths = torch.LongTensor(len(batch))
|
|
for i in range(len(ids_sorted_decreasing)):
|
|
mel = batch[ids_sorted_decreasing[i]][1]
|
|
mel_padded[i, :, :mel.size(1)] = mel
|
|
gate_padded[i, mel.size(1)-1:] = 1
|
|
output_lengths[i] = mel.size(1)
|
|
|
|
filenames = [j[2] for j in batch]
|
|
|
|
return {
|
|
'padded_text': text_padded,
|
|
'input_lengths': input_lengths,
|
|
'padded_mel': mel_padded,
|
|
'padded_gate': gate_padded,
|
|
'output_lengths': output_lengths,
|
|
'filenames': filenames
|
|
}
|
|
|
|
|
|
if __name__ == '__main__':
|
|
params = {
|
|
'mode': 'nv_tacotron',
|
|
'path': 'E:\\audio\\LJSpeech-1.1\\ljs_audio_text_train_filelist.txt',
|
|
'phase': 'train',
|
|
'n_workers': 0,
|
|
'batch_size': 16,
|
|
#'return_wavs': True,
|
|
#'input_sample_rate': 22050,
|
|
#'sampling_rate': 8000
|
|
}
|
|
from data import create_dataset, create_dataloader
|
|
|
|
ds, c = create_dataset(params, return_collate=True)
|
|
dl = create_dataloader(ds, params, collate_fn=c)
|
|
i = 0
|
|
m = []
|
|
max_text = 0
|
|
max_mel = 0
|
|
for b in tqdm(dl):
|
|
max_mel = max(max_mel, b['padded_mel'].shape[2])
|
|
max_text = max(max_text, b['padded_text'].shape[1])
|
|
m=torch.stack(m)
|
|
print(m.mean(), m.std())
|