forked from mrq/DL-Art-School
05963157c1
- Fixes to 'after' and 'before' defs for steps (turns out they werent working) - Feature nets take in a list of layers to extract. Not fully implemented yet. - Fixes bugs with RAGAN - Allows real input into generator gan to not be detached by param
314 lines
13 KiB
Python
314 lines
13 KiB
Python
import logging
|
|
import os
|
|
|
|
import torch
|
|
from apex import amp
|
|
from torch.nn.parallel import DataParallel, DistributedDataParallel
|
|
import torch.nn as nn
|
|
|
|
import models.lr_scheduler as lr_scheduler
|
|
import models.networks as networks
|
|
from models.base_model import BaseModel
|
|
from models.steps.steps import ConfigurableStep
|
|
from models.experiments.experiments import get_experiment_for_name
|
|
import torchvision.utils as utils
|
|
|
|
logger = logging.getLogger('base')
|
|
|
|
|
|
class ExtensibleTrainer(BaseModel):
|
|
def __init__(self, opt):
|
|
super(ExtensibleTrainer, self).__init__(opt)
|
|
if opt['dist']:
|
|
self.rank = torch.distributed.get_rank()
|
|
else:
|
|
self.rank = -1 # non dist training
|
|
train_opt = opt['train']
|
|
|
|
# env is used as a global state to store things that subcomponents might need.
|
|
self.env = {'device': self.device,
|
|
'rank': self.rank,
|
|
'opt': opt,
|
|
'step': 0}
|
|
|
|
self.mega_batch_factor = 1
|
|
if self.is_train:
|
|
self.mega_batch_factor = train_opt['mega_batch_factor']
|
|
self.env['mega_batch_factor'] = self.mega_batch_factor
|
|
|
|
self.netsG = {}
|
|
self.netsD = {}
|
|
# Note that this is on the chopping block. It should be integrated into an injection point.
|
|
self.netF = networks.define_F().to(self.device) # Used to compute feature loss.
|
|
for name, net in opt['networks'].items():
|
|
# Trainable is a required parameter, but the default is simply true. Set it here.
|
|
if 'trainable' not in net.keys():
|
|
net['trainable'] = True
|
|
|
|
if net['type'] == 'generator':
|
|
new_net = networks.define_G(net, None, opt['scale']).to(self.device)
|
|
self.netsG[name] = new_net
|
|
elif net['type'] == 'discriminator':
|
|
new_net = networks.define_D_net(net, opt['datasets']['train']['target_size']).to(self.device)
|
|
self.netsD[name] = new_net
|
|
else:
|
|
raise NotImplementedError("Can only handle generators and discriminators")
|
|
|
|
if not net['trainable']:
|
|
new_net.eval()
|
|
|
|
# Initialize the train/eval steps
|
|
self.step_names = []
|
|
self.steps = []
|
|
for step_name, step in opt['steps'].items():
|
|
step = ConfigurableStep(step, self.env)
|
|
self.step_names.append(step_name) # This could be an OrderedDict, but it's a PITA to integrate with AMP below.
|
|
self.steps.append(step)
|
|
|
|
# step.define_optimizers() relies on the networks being placed in the env, so put them there. Even though
|
|
# they aren't wrapped yet.
|
|
self.env['generators'] = self.netsG
|
|
self.env['discriminators'] = self.netsD
|
|
|
|
# Define the optimizers from the steps
|
|
for s in self.steps:
|
|
s.define_optimizers()
|
|
self.optimizers.extend(s.get_optimizers())
|
|
|
|
if self.is_train:
|
|
# Find the optimizers that are using the default scheduler, then build them.
|
|
def_opt = []
|
|
for s in self.steps:
|
|
def_opt.extend(s.get_optimizers_with_default_scheduler())
|
|
self.schedulers = lr_scheduler.get_scheduler_for_name(train_opt['default_lr_scheme'], def_opt, train_opt)
|
|
else:
|
|
self.schedulers = []
|
|
|
|
# Initialize amp.
|
|
total_nets = [g for g in self.netsG.values()] + [d for d in self.netsD.values()]
|
|
if 'amp_opt_level' in opt.keys():
|
|
self.env['amp'] = True
|
|
amp_nets, amp_opts = amp.initialize(total_nets + [self.netF] + self.steps,
|
|
self.optimizers, opt_level=opt['amp_opt_level'], num_losses=len(opt['steps']))
|
|
else:
|
|
amp_nets = total_nets + [self.netF] + self.steps
|
|
amp_opts = self.optimizers
|
|
self.env['amp'] = False
|
|
|
|
# Unwrap steps & netF & optimizers
|
|
self.netF = amp_nets[len(total_nets)]
|
|
assert(len(self.steps) == len(amp_nets[len(total_nets)+1:]))
|
|
self.steps = amp_nets[len(total_nets)+1:]
|
|
amp_nets = amp_nets[:len(total_nets)]
|
|
self.optimizers = amp_opts
|
|
|
|
# DataParallel
|
|
dnets = []
|
|
for anet in amp_nets:
|
|
if opt['dist']:
|
|
dnet = DistributedDataParallel(anet,
|
|
device_ids=[torch.cuda.current_device()],
|
|
find_unused_parameters=True)
|
|
else:
|
|
dnet = DataParallel(anet)
|
|
if self.is_train:
|
|
dnet.train()
|
|
else:
|
|
dnet.eval()
|
|
dnets.append(dnet)
|
|
if not opt['dist']:
|
|
self.netF = DataParallel(self.netF)
|
|
|
|
# Backpush the wrapped networks into the network dicts..
|
|
self.networks = {}
|
|
found = 0
|
|
for dnet in dnets:
|
|
for net_dict in [self.netsD, self.netsG]:
|
|
for k, v in net_dict.items():
|
|
if v == dnet.module:
|
|
net_dict[k] = dnet
|
|
self.networks[k] = dnet
|
|
found += 1
|
|
assert found == len(self.netsG) + len(self.netsD)
|
|
|
|
# Replace the env networks with the wrapped networks
|
|
self.env['generators'] = self.netsG
|
|
self.env['discriminators'] = self.netsD
|
|
|
|
self.print_network() # print network
|
|
self.load() # load G and D if needed
|
|
|
|
# Load experiments
|
|
self.experiments = []
|
|
if 'experiments' in opt.keys():
|
|
self.experiments = [get_experiment_for_name(e) for e in op['experiments']]
|
|
|
|
# Setting this to false triggers SRGAN to call the models update_model() function on the first iteration.
|
|
self.updated = True
|
|
|
|
def feed_data(self, data, need_GT=True):
|
|
self.eval_state = {}
|
|
for o in self.optimizers:
|
|
o.zero_grad()
|
|
torch.cuda.empty_cache()
|
|
|
|
self.lq = torch.chunk(data['LQ'].to(self.device), chunks=self.mega_batch_factor, dim=0)
|
|
if need_GT:
|
|
self.hq = [t.to(self.device) for t in torch.chunk(data['GT'], chunks=self.mega_batch_factor, dim=0)]
|
|
input_ref = data['ref'] if 'ref' in data.keys() else data['GT']
|
|
self.ref = [t.to(self.device) for t in torch.chunk(input_ref, chunks=self.mega_batch_factor, dim=0)]
|
|
else:
|
|
self.hq = self.lq
|
|
self.ref = self.lq
|
|
|
|
self.dstate = {'lq': self.lq, 'hq': self.hq, 'ref': self.ref}
|
|
for k, v in data.items():
|
|
if k not in ['LQ', 'ref', 'GT'] and isinstance(v, torch.Tensor):
|
|
self.dstate[k] = [t.to(self.device) for t in torch.chunk(v, chunks=self.mega_batch_factor, dim=0)]
|
|
|
|
def optimize_parameters(self, step):
|
|
self.env['step'] = step
|
|
|
|
# Some models need to make parametric adjustments per-step. Do that here.
|
|
for net in self.networks.values():
|
|
if hasattr(net.module, "update_for_step"):
|
|
net.module.update_for_step(step, os.path.join(self.opt['path']['models'], ".."))
|
|
|
|
# Iterate through the steps, performing them one at a time.
|
|
state = self.dstate
|
|
for step_num, s in enumerate(self.steps):
|
|
# Skip steps if mod_step doesn't line up.
|
|
if 'mod_step' in s.step_opt.keys() and step % s.step_opt['mod_step'] != 0:
|
|
continue
|
|
# Steps can opt out of early (or late) training, make sure that happens here.
|
|
if 'after' in s.step_opt.keys() and step < s.step_opt['after'] or 'before' in s.step_opt.keys() and step > s.step_opt['before']:
|
|
continue
|
|
|
|
# Only set requires_grad=True for the network being trained.
|
|
nets_to_train = s.get_networks_trained()
|
|
enabled = 0
|
|
for name, net in self.networks.items():
|
|
net_enabled = name in nets_to_train
|
|
if net_enabled:
|
|
enabled += 1
|
|
for p in net.parameters():
|
|
if p.dtype != torch.int64 and p.dtype != torch.bool:
|
|
p.requires_grad = net_enabled
|
|
else:
|
|
p.requires_grad = False
|
|
assert enabled == len(nets_to_train)
|
|
|
|
# Update experiments
|
|
[e.before_step(self.opt, self.step_names[step_num], self.env, nets_to_train, state) for e in self.experiments]
|
|
|
|
for o in s.get_optimizers():
|
|
o.zero_grad()
|
|
|
|
# Now do a forward and backward pass for each gradient accumulation step.
|
|
new_states = {}
|
|
for m in range(self.mega_batch_factor):
|
|
ns = s.do_forward_backward(state, m, step_num)
|
|
for k, v in ns.items():
|
|
if k not in new_states.keys():
|
|
new_states[k] = [v]
|
|
else:
|
|
new_states[k].append(v)
|
|
|
|
# Push the detached new state tensors into the state map for use with the next step.
|
|
for k, v in new_states.items():
|
|
# State is immutable to reduce complexity. Overwriting existing state keys is not supported.
|
|
assert k not in state.keys()
|
|
state[k] = v
|
|
|
|
# And finally perform optimization.
|
|
[e.before_optimize(state) for e in self.experiments]
|
|
s.do_step()
|
|
[e.after_optimize(state) for e in self.experiments]
|
|
|
|
# Record visual outputs for usage in debugging and testing.
|
|
if 'visuals' in self.opt['logger'].keys():
|
|
sample_save_path = os.path.join(self.opt['path']['models'], "..", "visual_dbg")
|
|
for v in self.opt['logger']['visuals']:
|
|
if v not in state.keys():
|
|
continue # This can happen for several reasons (ex: 'after' defs), just ignore it.
|
|
if step % self.opt['logger']['visual_debug_rate'] == 0:
|
|
for i, dbgv in enumerate(state[v]):
|
|
if dbgv.shape[1] > 3:
|
|
dbgv = dbgv[:,:3,:,:]
|
|
os.makedirs(os.path.join(sample_save_path, v), exist_ok=True)
|
|
utils.save_image(dbgv, os.path.join(sample_save_path, v, "%05i_%02i.png" % (step, i)))
|
|
|
|
def compute_fea_loss(self, real, fake):
|
|
with torch.no_grad():
|
|
logits_real = self.netF(real)
|
|
logits_fake = self.netF(fake)
|
|
return nn.L1Loss().to(self.device)(logits_fake, logits_real)
|
|
|
|
def test(self):
|
|
for net in self.netsG.values():
|
|
net.eval()
|
|
|
|
with torch.no_grad():
|
|
# Iterate through the steps, performing them one at a time.
|
|
state = self.dstate
|
|
for step_num, s in enumerate(self.steps):
|
|
ns = s.do_forward_backward(state, 0, step_num, train=False)
|
|
for k, v in ns.items():
|
|
state[k] = [v]
|
|
|
|
self.eval_state = {}
|
|
for k, v in state.items():
|
|
self.eval_state[k] = [s.detach().cpu() if isinstance(s, torch.Tensor) else s for s in v]
|
|
|
|
# For backwards compatibility..
|
|
self.fake_H = self.eval_state[self.opt['eval']['output_state']][0].float().cpu()
|
|
|
|
for net in self.netsG.values():
|
|
net.train()
|
|
|
|
# Fetches a summary of the log.
|
|
def get_current_log(self, step):
|
|
log = {}
|
|
for s in self.steps:
|
|
log.update(s.get_metrics())
|
|
|
|
for e in self.experiments:
|
|
log.update(e.get_log_data())
|
|
|
|
# Some generators can do their own metric logging.
|
|
for net_name, net in self.networks.items():
|
|
if hasattr(net.module, "get_debug_values"):
|
|
log.update(net.module.get_debug_values(step, net_name))
|
|
return log
|
|
|
|
def get_current_visuals(self, need_GT=True):
|
|
# Conforms to an archaic format from MMSR.
|
|
return {'LQ': self.eval_state['lq'][0].float().cpu(),
|
|
'GT': self.eval_state['hq'][0].float().cpu(),
|
|
'rlt': self.eval_state[self.opt['eval']['output_state']][0].float().cpu()}
|
|
|
|
def print_network(self):
|
|
for name, net in self.networks.items():
|
|
s, n = self.get_network_description(net)
|
|
net_struc_str = '{}'.format(net.__class__.__name__)
|
|
if self.rank <= 0:
|
|
logger.info('Network {} structure: {}, with parameters: {:,d}'.format(name, net_struc_str, n))
|
|
logger.info(s)
|
|
|
|
def load(self):
|
|
for netdict in [self.netsG, self.netsD]:
|
|
for name, net in netdict.items():
|
|
load_path = self.opt['path']['pretrain_model_%s' % (name,)]
|
|
if load_path is not None:
|
|
logger.info('Loading model for [%s]' % (load_path))
|
|
self.load_network(load_path, net, self.opt['path']['strict_load'])
|
|
|
|
def save(self, iter_step):
|
|
for name, net in self.networks.items():
|
|
# Don't save non-trainable networks.
|
|
if self.opt['networks'][name]['trainable']:
|
|
self.save_network(net, name, iter_step)
|
|
|
|
def force_restore_swapout(self):
|
|
# Legacy method. Do nothing.
|
|
pass |