forked from mrq/DL-Art-School
587a4f4050
I'm being really lazy here - these nets are not really different from each other except at which layer they terminate. This one terminates at 2x downsampling, which is simply indicative of a direction I want to go for testing these pixpro networks.
508 lines
20 KiB
Python
508 lines
20 KiB
Python
import math
|
|
import copy
|
|
import os
|
|
import random
|
|
from functools import wraps, partial
|
|
from math import floor
|
|
|
|
import torch
|
|
import torchvision
|
|
from torch import nn, einsum
|
|
import torch.nn.functional as F
|
|
|
|
from kornia import augmentation as augs
|
|
from kornia import filters, color
|
|
|
|
from einops import rearrange
|
|
|
|
# helper functions
|
|
from trainer.networks import register_model, create_model
|
|
|
|
|
|
def identity(t):
|
|
return t
|
|
|
|
def default(val, def_val):
|
|
return def_val if val is None else val
|
|
|
|
def rand_true(prob):
|
|
return random.random() < prob
|
|
|
|
def singleton(cache_key):
|
|
def inner_fn(fn):
|
|
@wraps(fn)
|
|
def wrapper(self, *args, **kwargs):
|
|
instance = getattr(self, cache_key)
|
|
if instance is not None:
|
|
return instance
|
|
|
|
instance = fn(self, *args, **kwargs)
|
|
setattr(self, cache_key, instance)
|
|
return instance
|
|
return wrapper
|
|
return inner_fn
|
|
|
|
def get_module_device(module):
|
|
return next(module.parameters()).device
|
|
|
|
def set_requires_grad(model, val):
|
|
for p in model.parameters():
|
|
p.requires_grad = val
|
|
|
|
def cutout_coordinates(image, ratio_range = (0.6, 0.8)):
|
|
_, _, orig_h, orig_w = image.shape
|
|
|
|
ratio_lo, ratio_hi = ratio_range
|
|
random_ratio = ratio_lo + random.random() * (ratio_hi - ratio_lo)
|
|
w, h = floor(random_ratio * orig_w), floor(random_ratio * orig_h)
|
|
coor_x = floor((orig_w - w) * random.random())
|
|
coor_y = floor((orig_h - h) * random.random())
|
|
return ((coor_y, coor_y + h), (coor_x, coor_x + w)), random_ratio
|
|
|
|
def cutout_and_resize(image, coordinates, output_size = None, mode = 'nearest'):
|
|
shape = image.shape
|
|
output_size = default(output_size, shape[2:])
|
|
(y0, y1), (x0, x1) = coordinates
|
|
cutout_image = image[:, :, y0:y1, x0:x1]
|
|
return F.interpolate(cutout_image, size = output_size, mode = mode)
|
|
|
|
def scale_coords(coords, scale):
|
|
output = [[0,0],[0,0]]
|
|
for j in range(2):
|
|
for k in range(2):
|
|
output[j][k] = int(coords[j][k] / scale)
|
|
return output
|
|
|
|
def reverse_cutout_and_resize(image, coordinates, scale_reduction, mode = 'nearest'):
|
|
blank = torch.zeros_like(image)
|
|
coordinates = scale_coords(coordinates, scale_reduction)
|
|
(y0, y1), (x0, x1) = coordinates
|
|
orig_cutout_shape = (y1-y0, x1-x0)
|
|
if orig_cutout_shape[0] <= 0 or orig_cutout_shape[1] <= 0:
|
|
return None
|
|
|
|
un_resized_img = F.interpolate(image, size=orig_cutout_shape, mode=mode)
|
|
blank[:,:,y0:y1,x0:x1] = un_resized_img
|
|
return blank
|
|
|
|
def compute_shared_coords(coords1, coords2, scale_reduction):
|
|
(y1_t, y1_b), (x1_l, x1_r) = scale_coords(coords1, scale_reduction)
|
|
(y2_t, y2_b), (x2_l, x2_r) = scale_coords(coords2, scale_reduction)
|
|
shared = ((max(y1_t, y2_t), min(y1_b, y2_b)),
|
|
(max(x1_l, x2_l), min(x1_r, x2_r)))
|
|
for s in shared:
|
|
if s == 0:
|
|
return None
|
|
return shared
|
|
|
|
def get_shared_region(proj_pixel_one, proj_pixel_two, cutout_coordinates_one, cutout_coordinates_two, flip_image_one_fn, flip_image_two_fn, img_orig_shape, interp_mode):
|
|
# Unflip the pixel projections
|
|
proj_pixel_one = flip_image_one_fn(proj_pixel_one)
|
|
proj_pixel_two = flip_image_two_fn(proj_pixel_two)
|
|
|
|
# Undo the cutout and resize, taking into account the scale reduction applied by the encoder.
|
|
scale_reduction = proj_pixel_one.shape[-1] / img_orig_shape[-1]
|
|
proj_pixel_one = reverse_cutout_and_resize(proj_pixel_one, cutout_coordinates_one, scale_reduction,
|
|
mode=interp_mode)
|
|
proj_pixel_two = reverse_cutout_and_resize(proj_pixel_two, cutout_coordinates_two, scale_reduction,
|
|
mode=interp_mode)
|
|
if proj_pixel_one is None or proj_pixel_two is None:
|
|
print("Could not extract projected image region. The selected cutout coordinates were smaller than the aggregate size of one latent block!")
|
|
return None
|
|
|
|
# Compute the shared coordinates for the two cutouts:
|
|
shared_coords = compute_shared_coords(cutout_coordinates_one, cutout_coordinates_two, scale_reduction)
|
|
if shared_coords is None:
|
|
print("No shared coordinates for this iteration (probably should just recompute those coordinates earlier..")
|
|
return None
|
|
(yt, yb), (xl, xr) = shared_coords
|
|
|
|
return proj_pixel_one[:, :, yt:yb, xl:xr], proj_pixel_two[:, :, yt:yb, xl:xr]
|
|
|
|
# augmentation utils
|
|
|
|
class RandomApply(nn.Module):
|
|
def __init__(self, fn, p):
|
|
super().__init__()
|
|
self.fn = fn
|
|
self.p = p
|
|
def forward(self, x):
|
|
if random.random() > self.p:
|
|
return x
|
|
return self.fn(x)
|
|
|
|
# exponential moving average
|
|
|
|
class EMA():
|
|
def __init__(self, beta):
|
|
super().__init__()
|
|
self.beta = beta
|
|
|
|
def update_average(self, old, new):
|
|
if old is None:
|
|
return new
|
|
return old * self.beta + (1 - self.beta) * new
|
|
|
|
def update_moving_average(ema_updater, ma_model, current_model):
|
|
for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()):
|
|
old_weight, up_weight = ma_params.data, current_params.data
|
|
ma_params.data = ema_updater.update_average(old_weight, up_weight)
|
|
|
|
# loss fn
|
|
|
|
def loss_fn(x, y):
|
|
x = F.normalize(x, dim=-1, p=2)
|
|
y = F.normalize(y, dim=-1, p=2)
|
|
return 2 - 2 * (x * y).sum(dim=-1)
|
|
|
|
# classes
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(self, chan, chan_out = 256, inner_dim = 2048):
|
|
super().__init__()
|
|
self.net = nn.Sequential(
|
|
nn.Linear(chan, inner_dim),
|
|
nn.BatchNorm1d(inner_dim),
|
|
nn.ReLU(),
|
|
nn.Linear(inner_dim, chan_out)
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.net(x)
|
|
|
|
class ConvMLP(nn.Module):
|
|
def __init__(self, chan, chan_out = 256, inner_dim = 2048):
|
|
super().__init__()
|
|
self.net = nn.Sequential(
|
|
nn.Conv2d(chan, inner_dim, 1),
|
|
nn.BatchNorm2d(inner_dim),
|
|
nn.ReLU(),
|
|
nn.Conv2d(inner_dim, chan_out, 1)
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.net(x)
|
|
|
|
class PPM(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
chan,
|
|
num_layers = 1,
|
|
gamma = 2):
|
|
super().__init__()
|
|
self.gamma = gamma
|
|
|
|
if num_layers == 0:
|
|
self.transform_net = nn.Identity()
|
|
elif num_layers == 1:
|
|
self.transform_net = nn.Conv2d(chan, chan, 1)
|
|
elif num_layers == 2:
|
|
self.transform_net = nn.Sequential(
|
|
nn.Conv2d(chan, chan, 1),
|
|
nn.BatchNorm2d(chan),
|
|
nn.ReLU(),
|
|
nn.Conv2d(chan, chan, 1)
|
|
)
|
|
else:
|
|
raise ValueError('num_layers must be one of 0, 1, or 2')
|
|
|
|
def forward(self, x):
|
|
xi = x[:, :, :, :, None, None]
|
|
xj = x[:, :, None, None, :, :]
|
|
similarity = F.relu(F.cosine_similarity(xi, xj, dim = 1)) ** self.gamma
|
|
|
|
transform_out = self.transform_net(x)
|
|
out = einsum('b x y h w, b c h w -> b c x y', similarity, transform_out)
|
|
return out
|
|
|
|
# a wrapper class for the base neural network
|
|
# will manage the interception of the hidden layer output
|
|
# and pipe it into the projecter and predictor nets
|
|
|
|
class NetWrapper(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
net,
|
|
instance_projection_size,
|
|
instance_projection_hidden_size,
|
|
pix_projection_size,
|
|
pix_projection_hidden_size,
|
|
layer_pixel = -2,
|
|
layer_instance = -2
|
|
):
|
|
super().__init__()
|
|
self.net = net
|
|
self.layer_pixel = layer_pixel
|
|
self.layer_instance = layer_instance
|
|
|
|
self.pixel_projector = None
|
|
self.instance_projector = None
|
|
|
|
self.instance_projection_size = instance_projection_size
|
|
self.instance_projection_hidden_size = instance_projection_hidden_size
|
|
self.pix_projection_size = pix_projection_size
|
|
self.pix_projection_hidden_size = pix_projection_hidden_size
|
|
|
|
self.hidden_pixel = None
|
|
self.hidden_instance = None
|
|
self.hook_registered = False
|
|
|
|
def _find_layer(self, layer_id):
|
|
if type(layer_id) == str:
|
|
modules = dict([*self.net.named_modules()])
|
|
return modules.get(layer_id, None)
|
|
elif type(layer_id) == int:
|
|
children = [*self.net.children()]
|
|
return children[layer_id]
|
|
return None
|
|
|
|
def _hook(self, attr_name, _, __, output):
|
|
setattr(self, attr_name, output)
|
|
|
|
def _register_hook(self):
|
|
pixel_layer = self._find_layer(self.layer_pixel)
|
|
instance_layer = self._find_layer(self.layer_instance)
|
|
|
|
assert pixel_layer is not None, f'hidden layer ({self.layer_pixel}) not found'
|
|
assert instance_layer is not None, f'hidden layer ({self.layer_instance}) not found'
|
|
|
|
pixel_layer.register_forward_hook(partial(self._hook, 'hidden_pixel'))
|
|
instance_layer.register_forward_hook(partial(self._hook, 'hidden_instance'))
|
|
self.hook_registered = True
|
|
|
|
@singleton('pixel_projector')
|
|
def _get_pixel_projector(self, hidden):
|
|
_, dim, *_ = hidden.shape
|
|
projector = ConvMLP(dim, self.pix_projection_size, self.pix_projection_hidden_size)
|
|
return projector.to(hidden)
|
|
|
|
@singleton('instance_projector')
|
|
def _get_instance_projector(self, hidden):
|
|
_, dim = hidden.shape
|
|
projector = MLP(dim, self.instance_projection_size, self.instance_projection_hidden_size)
|
|
return projector.to(hidden)
|
|
|
|
def get_representation(self, x):
|
|
if not self.hook_registered:
|
|
self._register_hook()
|
|
|
|
_ = self.net(x)
|
|
hidden_pixel = self.hidden_pixel
|
|
hidden_instance = self.hidden_instance
|
|
self.hidden_pixel = None
|
|
self.hidden_instance = None
|
|
assert hidden_pixel is not None, f'hidden pixel layer {self.layer_pixel} never emitted an output'
|
|
assert hidden_instance is not None, f'hidden instance layer {self.layer_instance} never emitted an output'
|
|
return hidden_pixel, hidden_instance
|
|
|
|
def forward(self, x):
|
|
pixel_representation, instance_representation = self.get_representation(x)
|
|
instance_representation = instance_representation.flatten(1)
|
|
|
|
pixel_projector = self._get_pixel_projector(pixel_representation)
|
|
instance_projector = self._get_instance_projector(instance_representation)
|
|
|
|
pixel_projection = pixel_projector(pixel_representation)
|
|
instance_projection = instance_projector(instance_representation)
|
|
return pixel_projection, instance_projection
|
|
|
|
# main class
|
|
class PixelCL(nn.Module):
|
|
def __init__(
|
|
self,
|
|
net,
|
|
image_size,
|
|
hidden_layer_pixel = -2,
|
|
hidden_layer_instance = -2,
|
|
instance_projection_size = 256,
|
|
instance_projection_hidden_size = 2048,
|
|
pix_projection_size = 256,
|
|
pix_projection_hidden_size = 2048,
|
|
augment_fn = None,
|
|
augment_fn2 = None,
|
|
prob_rand_hflip = 0.25,
|
|
moving_average_decay = 0.99,
|
|
ppm_num_layers = 1,
|
|
ppm_gamma = 2,
|
|
distance_thres = 0.7,
|
|
similarity_temperature = 0.3,
|
|
cutout_ratio_range = (0.6, 0.8),
|
|
cutout_interpolate_mode = 'nearest',
|
|
coord_cutout_interpolate_mode = 'bilinear',
|
|
max_latent_dim = None # When set, this is the number of stochastically extracted pixels from the latent to extract. Must have an integer square root.
|
|
):
|
|
super().__init__()
|
|
|
|
DEFAULT_AUG = nn.Sequential(
|
|
RandomApply(augs.ColorJitter(0.6, 0.6, 0.6, 0.2), p=0.8),
|
|
augs.RandomGrayscale(p=0.2),
|
|
RandomApply(filters.GaussianBlur2d((3, 3), (1.5, 1.5)), p=0.1),
|
|
augs.RandomSolarize(p=0.5),
|
|
# Normalize left out because it should be done at the model level.
|
|
)
|
|
|
|
self.augment1 = default(augment_fn, DEFAULT_AUG)
|
|
self.augment2 = default(augment_fn2, self.augment1)
|
|
self.prob_rand_hflip = prob_rand_hflip
|
|
|
|
self.online_encoder = NetWrapper(
|
|
net = net,
|
|
instance_projection_size = instance_projection_size,
|
|
instance_projection_hidden_size = instance_projection_hidden_size,
|
|
pix_projection_size = pix_projection_size,
|
|
pix_projection_hidden_size = pix_projection_hidden_size,
|
|
layer_pixel = hidden_layer_pixel,
|
|
layer_instance = hidden_layer_instance
|
|
)
|
|
|
|
self.target_encoder = None
|
|
self.target_ema_updater = EMA(moving_average_decay)
|
|
|
|
self.distance_thres = distance_thres
|
|
self.similarity_temperature = similarity_temperature
|
|
|
|
# This requirement is due to the way that these are processed, not a hard requirement.
|
|
assert math.sqrt(max_latent_dim) == int(math.sqrt(max_latent_dim))
|
|
self.max_latent_dim = max_latent_dim
|
|
|
|
self.propagate_pixels = PPM(
|
|
chan = pix_projection_size,
|
|
num_layers = ppm_num_layers,
|
|
gamma = ppm_gamma
|
|
)
|
|
|
|
self.cutout_ratio_range = cutout_ratio_range
|
|
self.cutout_interpolate_mode = cutout_interpolate_mode
|
|
self.coord_cutout_interpolate_mode = coord_cutout_interpolate_mode
|
|
|
|
# instance level predictor
|
|
self.online_predictor = MLP(instance_projection_size, instance_projection_size, instance_projection_hidden_size)
|
|
|
|
# get device of network and make wrapper same device
|
|
device = get_module_device(net)
|
|
self.to(device)
|
|
|
|
# send a mock image tensor to instantiate singleton parameters
|
|
self.forward(torch.randn(2, 3, image_size, image_size, device=device))
|
|
|
|
@singleton('target_encoder')
|
|
def _get_target_encoder(self):
|
|
target_encoder = copy.deepcopy(self.online_encoder)
|
|
set_requires_grad(target_encoder, False)
|
|
return target_encoder
|
|
|
|
def reset_moving_average(self):
|
|
del self.target_encoder
|
|
self.target_encoder = None
|
|
|
|
def update_moving_average(self):
|
|
assert self.target_encoder is not None, 'target encoder has not been created yet'
|
|
update_moving_average(self.target_ema_updater, self.target_encoder, self.online_encoder)
|
|
|
|
def forward(self, x):
|
|
shape, device, prob_flip = x.shape, x.device, self.prob_rand_hflip
|
|
|
|
rand_flip_fn = lambda t: torch.flip(t, dims = (-1,))
|
|
|
|
flip_image_one, flip_image_two = rand_true(prob_flip), rand_true(prob_flip)
|
|
flip_image_one_fn = rand_flip_fn if flip_image_one else identity
|
|
flip_image_two_fn = rand_flip_fn if flip_image_two else identity
|
|
|
|
cutout_coordinates_one, _ = cutout_coordinates(x, self.cutout_ratio_range)
|
|
cutout_coordinates_two, _ = cutout_coordinates(x, self.cutout_ratio_range)
|
|
|
|
image_one_cutout = cutout_and_resize(x, cutout_coordinates_one, mode = self.cutout_interpolate_mode)
|
|
image_two_cutout = cutout_and_resize(x, cutout_coordinates_two, mode = self.cutout_interpolate_mode)
|
|
|
|
image_one_cutout = flip_image_one_fn(image_one_cutout)
|
|
image_two_cutout = flip_image_two_fn(image_two_cutout)
|
|
|
|
image_one_cutout, image_two_cutout = self.augment1(image_one_cutout), self.augment2(image_two_cutout)
|
|
|
|
self.aug1 = image_one_cutout.detach().clone()
|
|
self.aug2 = image_two_cutout.detach().clone()
|
|
|
|
proj_pixel_one, proj_instance_one = self.online_encoder(image_one_cutout)
|
|
proj_pixel_two, proj_instance_two = self.online_encoder(image_two_cutout)
|
|
|
|
proj_pixel_one, proj_pixel_two = get_shared_region(proj_pixel_one, proj_pixel_two, cutout_coordinates_one,
|
|
cutout_coordinates_two, flip_image_one_fn, flip_image_two_fn,
|
|
image_one_cutout.shape, self.cutout_interpolate_mode)
|
|
if proj_pixel_one is None or proj_pixel_two is None:
|
|
positive_pixel_pairs = 0
|
|
else:
|
|
positive_pixel_pairs = proj_pixel_one.shape[-1] * proj_pixel_one.shape[-2]
|
|
|
|
with torch.no_grad():
|
|
target_encoder = self._get_target_encoder()
|
|
target_proj_pixel_one, target_proj_instance_one = target_encoder(image_one_cutout)
|
|
target_proj_pixel_two, target_proj_instance_two = target_encoder(image_two_cutout)
|
|
target_proj_pixel_one, target_proj_pixel_two = get_shared_region(target_proj_pixel_one, target_proj_pixel_two, cutout_coordinates_one,
|
|
cutout_coordinates_two, flip_image_one_fn, flip_image_two_fn,
|
|
image_one_cutout.shape, self.cutout_interpolate_mode)
|
|
|
|
# If max_latent_dim is specified, stochastically extract latents from the shared areas.
|
|
b, c, pp_h, pp_w = proj_pixel_one.shape
|
|
if self.max_latent_dim and (pp_h * pp_w) > self.max_latent_dim:
|
|
prob = torch.full((self.max_latent_dim,), 1 / (self.max_latent_dim))
|
|
latents = [proj_pixel_one, proj_pixel_two, target_proj_pixel_one, target_proj_pixel_two]
|
|
extracted = []
|
|
for l in latents:
|
|
l = l.reshape(b, c, pp_h * pp_w)
|
|
l = l[:, :, prob.multinomial(num_samples=self.max_latent_dim, replacement=False)]
|
|
# For compatibility with the existing pixpro code, reshape this stochastic sampling back into a 2d "square".
|
|
# Note that the actual structure no longer matters going forwards. Pixels are only compared to themselves and others without regards
|
|
# to the original image structure.
|
|
sqdim = int(math.sqrt(self.max_latent_dim))
|
|
extracted.append(l.reshape(b, c, sqdim, sqdim))
|
|
proj_pixel_one, proj_pixel_two, target_proj_pixel_one, target_proj_pixel_two = extracted
|
|
|
|
# flatten all the pixel projections
|
|
flatten = lambda t: rearrange(t, 'b c h w -> b c (h w)')
|
|
target_proj_pixel_one, target_proj_pixel_two = list(map(flatten, (target_proj_pixel_one, target_proj_pixel_two)))
|
|
|
|
# get instance level loss
|
|
pred_instance_one = self.online_predictor(proj_instance_one)
|
|
pred_instance_two = self.online_predictor(proj_instance_two)
|
|
loss_instance_one = loss_fn(pred_instance_one, target_proj_instance_two.detach())
|
|
loss_instance_two = loss_fn(pred_instance_two, target_proj_instance_one.detach())
|
|
instance_loss = (loss_instance_one + loss_instance_two).mean()
|
|
|
|
if positive_pixel_pairs == 0:
|
|
return instance_loss, 0
|
|
|
|
# calculate pix pro loss
|
|
propagated_pixels_one = self.propagate_pixels(proj_pixel_one)
|
|
propagated_pixels_two = self.propagate_pixels(proj_pixel_two)
|
|
|
|
propagated_pixels_one, propagated_pixels_two = list(map(flatten, (propagated_pixels_one, propagated_pixels_two)))
|
|
|
|
propagated_similarity_one_two = F.cosine_similarity(propagated_pixels_one[..., :, None], target_proj_pixel_two[..., None, :], dim = 1)
|
|
propagated_similarity_two_one = F.cosine_similarity(propagated_pixels_two[..., :, None], target_proj_pixel_one[..., None, :], dim = 1)
|
|
|
|
loss_pixpro_one_two = - propagated_similarity_one_two.mean()
|
|
loss_pixpro_two_one = - propagated_similarity_two_one.mean()
|
|
|
|
pix_loss = (loss_pixpro_one_two + loss_pixpro_two_one) / 2
|
|
|
|
return instance_loss, pix_loss, positive_pixel_pairs
|
|
|
|
# Allows visualizing what the augmentor is up to.
|
|
def visual_dbg(self, step, path):
|
|
if not hasattr(self, 'aug1'):
|
|
return
|
|
torchvision.utils.save_image(self.aug1, os.path.join(path, "%i_aug1.png" % (step,)))
|
|
torchvision.utils.save_image(self.aug2, os.path.join(path, "%i_aug2.png" % (step,)))
|
|
|
|
|
|
@register_model
|
|
def register_pixel_contrastive_learner(opt_net, opt):
|
|
subnet = create_model(opt, opt_net['subnet'])
|
|
kwargs = opt_net['kwargs']
|
|
if 'subnet_pretrain_path' in opt_net.keys():
|
|
sd = torch.load(opt_net['subnet_pretrain_path'])
|
|
subnet.load_state_dict(sd, strict=False)
|
|
return PixelCL(subnet, **kwargs)
|