forked from mrq/DL-Art-School
7eaabce48d
And it works! Thanks fixup..
134 lines
4.9 KiB
Python
134 lines
4.9 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import numpy as np
|
|
import torch.nn.functional as F
|
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1):
|
|
"""3x3 convolution with padding"""
|
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
|
padding=1, bias=False)
|
|
|
|
|
|
def conv1x1(in_planes, out_planes, stride=1):
|
|
"""1x1 convolution"""
|
|
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
|
|
|
|
|
class FixupBasicBlock(nn.Module):
|
|
expansion = 1
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
|
super(FixupBasicBlock, self).__init__()
|
|
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
|
|
self.bias1a = nn.Parameter(torch.zeros(1))
|
|
self.conv1 = conv3x3(inplanes, planes, stride)
|
|
self.bn1 = nn.BatchNorm2d(planes, affine=True)
|
|
self.bias1b = nn.Parameter(torch.zeros(1))
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
|
self.bias2a = nn.Parameter(torch.zeros(1))
|
|
self.conv2 = conv3x3(planes, planes)
|
|
self.bn2 = nn.BatchNorm2d(planes, affine=True)
|
|
self.scale = nn.Parameter(torch.ones(1))
|
|
self.bias2b = nn.Parameter(torch.zeros(1))
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
identity = x
|
|
|
|
out = self.conv1(x + self.bias1a)
|
|
out = self.lrelu(out + self.bias1b)
|
|
|
|
out = self.conv2(out + self.bias2a)
|
|
out = out * self.scale + self.bias2b
|
|
|
|
if self.downsample is not None:
|
|
identity = self.downsample(x + self.bias1a)
|
|
|
|
out += identity
|
|
out = self.lrelu(out)
|
|
|
|
return out
|
|
|
|
|
|
class FixupResNet(nn.Module):
|
|
|
|
def __init__(self, block, num_filters, layers, num_classes=1000):
|
|
super(FixupResNet, self).__init__()
|
|
self.num_layers = sum(layers)
|
|
self.bias1 = nn.Parameter(torch.zeros(1))
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
self.pixel_shuffle = nn.PixelShuffle(2)
|
|
|
|
# 4 input channels, including the noise.
|
|
self.conv1 = nn.Conv2d(4, num_filters, kernel_size=7, stride=2, padding=3,
|
|
bias=False)
|
|
|
|
self.inplanes = num_filters
|
|
self.down_layer1 = self._make_layer(block, num_filters, layers[0])
|
|
self.down_layer2 = self._make_layer(block, num_filters, layers[1], stride=2)
|
|
self.down_layer3 = self._make_layer(block, num_filters * 4, layers[2], stride=2)
|
|
self.down_layer4 = self._make_layer(block, num_filters * 16, layers[3], stride=2)
|
|
|
|
self.inplanes = num_filters * 4
|
|
self.up_layer1 = self._make_layer(block, num_filters * 4, layers[4], stride=1)
|
|
self.inplanes = num_filters
|
|
self.up_layer2 = self._make_layer(block, num_filters, layers[5], stride=1)
|
|
|
|
self.defilter = nn.Conv2d(num_filters, 3, kernel_size=5, stride=1, padding=2, bias=False)
|
|
|
|
for m in self.modules():
|
|
if isinstance(m, FixupBasicBlock):
|
|
nn.init.normal_(m.conv1.weight, mean=0, std=np.sqrt(2 / (m.conv1.weight.shape[0] * np.prod(m.conv1.weight.shape[2:]))) * self.num_layers ** (-0.5))
|
|
nn.init.constant_(m.conv2.weight, 0)
|
|
if m.downsample is not None:
|
|
nn.init.normal_(m.downsample.weight, mean=0, std=np.sqrt(2 / (m.downsample.weight.shape[0] * np.prod(m.downsample.weight.shape[2:]))))
|
|
elif isinstance(m, nn.Linear):
|
|
nn.init.constant_(m.weight, 0)
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
def _make_layer(self, block, planes, blocks, stride=1):
|
|
downsample = None
|
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
|
downsample = conv1x1(self.inplanes, planes * block.expansion, stride)
|
|
|
|
layers = []
|
|
layers.append(block(self.inplanes, planes, stride, downsample))
|
|
self.inplanes = planes * block.expansion
|
|
for _ in range(1, blocks):
|
|
layers.append(block(self.inplanes, planes))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
skip = x
|
|
|
|
# Noise has the same shape as the input with only one channel.
|
|
rand_feature = torch.randn((x.shape[0], 1) + x.shape[2:], device=x.device, dtype=x.dtype)
|
|
x = torch.cat([x, rand_feature], dim=1)
|
|
|
|
x = self.conv1(x)
|
|
x = self.lrelu(x + self.bias1)
|
|
|
|
x = self.down_layer1(x)
|
|
x = self.down_layer2(x)
|
|
x = self.down_layer3(x)
|
|
x = self.down_layer4(x)
|
|
|
|
x = self.pixel_shuffle(x)
|
|
x = self.up_layer1(x)
|
|
x = self.pixel_shuffle(x)
|
|
x = self.up_layer2(x)
|
|
|
|
x = self.defilter(x)
|
|
|
|
base = F.interpolate(skip, scale_factor=.25, mode='bilinear', align_corners=False)
|
|
return x + base
|
|
|
|
|
|
def fixup_resnet34(num_filters, **kwargs):
|
|
"""Constructs a Fixup-ResNet-34 model.
|
|
"""
|
|
model = FixupResNet(FixupBasicBlock, num_filters, [3, 4, 6, 3, 2, 2], **kwargs)
|
|
return model |