forked from mrq/DL-Art-School
658a267bab
- Add a network that accomodates this style of approximator while retaining structure - Migrate to SSIM approximation - Add a tool to visualize how these approximators are working - Fix some issues that came up while doign this work
90 lines
3.9 KiB
Python
90 lines
3.9 KiB
Python
import os.path as osp
|
|
import logging
|
|
import shutil
|
|
import time
|
|
import argparse
|
|
from collections import OrderedDict
|
|
|
|
import os
|
|
|
|
import torchvision
|
|
|
|
import utils
|
|
import utils.options as option
|
|
import utils.util as util
|
|
from data.util import bgr2ycbcr
|
|
import models.archs.SwitchedResidualGenerator_arch as srg
|
|
from models.ExtensibleTrainer import ExtensibleTrainer
|
|
from switched_conv.switched_conv_util import save_attention_to_image, save_attention_to_image_rgb
|
|
from switched_conv.switched_conv import compute_attention_specificity
|
|
from data import create_dataset, create_dataloader
|
|
from tqdm import tqdm
|
|
import torch
|
|
import models.networks as networks
|
|
|
|
if __name__ == "__main__":
|
|
#### options
|
|
torch.backends.cudnn.benchmark = True
|
|
srg_analyze = False
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../../options/train_psnr_approximator.yml')
|
|
opt = option.parse(parser.parse_args().opt, is_train=False)
|
|
opt = option.dict_to_nonedict(opt)
|
|
utils.util.loaded_options = opt
|
|
|
|
util.mkdirs(
|
|
(path for key, path in opt['path'].items()
|
|
if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key))
|
|
util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO,
|
|
screen=True, tofile=True)
|
|
logger = logging.getLogger('base')
|
|
logger.info(option.dict2str(opt))
|
|
|
|
#### Create test dataset and dataloader
|
|
test_loaders = []
|
|
for phase, dataset_opt in sorted(opt['datasets'].items()):
|
|
dataset_opt['n_workers'] = 0
|
|
test_set = create_dataset(dataset_opt)
|
|
test_loader = create_dataloader(test_set, dataset_opt, opt)
|
|
logger.info('Number of test images in [{:s}]: {:d}'.format(dataset_opt['name'], len(test_set)))
|
|
test_loaders.append(test_loader)
|
|
|
|
model = ExtensibleTrainer(opt)
|
|
for test_loader in test_loaders:
|
|
test_set_name = test_loader.dataset.opt['name']
|
|
logger.info('\nTesting [{:s}]...'.format(test_set_name))
|
|
test_start_time = time.time()
|
|
dataset_dir = osp.join(opt['path']['results_root'], test_set_name)
|
|
util.mkdir(dataset_dir)
|
|
|
|
dst_path = "F:\\playground"
|
|
[os.makedirs(osp.join(dst_path, str(i)), exist_ok=True) for i in range(10)]
|
|
|
|
corruptions = ['none', 'color_quantization', 'gaussian_blur', 'motion_blur', 'smooth_blur', 'noise',
|
|
'jpeg-medium', 'jpeg-broad', 'jpeg-normal', 'saturation', 'lq_resampling',
|
|
'lq_resampling4x']
|
|
c_counter = 0
|
|
test_set.corruptor.num_corrupts = 0
|
|
test_set.corruptor.random_corruptions = []
|
|
test_set.corruptor.fixed_corruptions = [corruptions[0]]
|
|
corruption_mse = [(0,0) for _ in corruptions]
|
|
|
|
tq = tqdm(test_loader)
|
|
batch_size = opt['datasets']['train']['batch_size']
|
|
for data in tq:
|
|
need_GT = False if test_loader.dataset.opt['dataroot_GT'] is None else True
|
|
model.feed_data(data, need_GT=need_GT)
|
|
model.test()
|
|
est_psnr = torch.mean(model.eval_state['psnr_approximate'][0], dim=[1,2,3])
|
|
for i in range(est_psnr.shape[0]):
|
|
im_path = data['GT_path'][i]
|
|
torchvision.utils.save_image(model.eval_state['lq'][0][i], osp.join(dst_path, str(int(est_psnr[i]*10)), osp.basename(im_path)))
|
|
#shutil.copy(im_path, osp.join(dst_path, str(int(est_psnr[i]*10))))
|
|
|
|
last_mse, last_ctr = corruption_mse[c_counter % len(corruptions)]
|
|
corruption_mse[c_counter % len(corruptions)] = (last_mse + torch.sum(est_psnr).item(), last_ctr + 1)
|
|
c_counter += 1
|
|
test_set.corruptor.fixed_corruptions = [corruptions[c_counter % len(corruptions)]]
|
|
if c_counter % 100 == 0:
|
|
for i, (mse, ctr) in enumerate(corruption_mse):
|
|
print("%s: %f" % (corruptions[i], mse / (ctr * batch_size))) |