forked from mrq/DL-Art-School
112 lines
4.0 KiB
Python
112 lines
4.0 KiB
Python
import os
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torch.utils.data
|
|
from torch import LongTensor
|
|
from tqdm import tqdm
|
|
|
|
from models.audio.tts.tacotron2 import load_filepaths_and_text
|
|
from models.audio.tts.tacotron2 import symbols
|
|
from models.audio.tts.tacotron2 import text_to_sequence
|
|
|
|
|
|
class GptTtsDataset(torch.utils.data.Dataset):
|
|
MAX_SYMBOLS_PER_PHRASE = 200
|
|
NUMBER_SYMBOLS = len(symbols)
|
|
NUMBER_TEXT_TOKENS = NUMBER_SYMBOLS + MAX_SYMBOLS_PER_PHRASE + 2
|
|
TEXT_START_TOKEN = LongTensor([NUMBER_TEXT_TOKENS-1])
|
|
TEXT_STOP_TOKEN = LongTensor([NUMBER_TEXT_TOKENS-2])
|
|
|
|
def __init__(self, opt):
|
|
self.path = os.path.dirname(opt['path'])
|
|
self.audiopaths_and_text = load_filepaths_and_text(opt['path'])
|
|
self.text_cleaners=['english_cleaners']
|
|
|
|
self.MEL_DICTIONARY_SIZE = opt['mel_vocab_size']+3
|
|
self.MEL_START_TOKEN = LongTensor([self.MEL_DICTIONARY_SIZE-3])
|
|
self.MEL_STOP_TOKEN = LongTensor([self.MEL_DICTIONARY_SIZE-2])
|
|
|
|
def __getitem__(self, index):
|
|
# Fetch text and add start/stop tokens.
|
|
audiopath_and_text = self.audiopaths_and_text[index]
|
|
audiopath, text = audiopath_and_text[0], audiopath_and_text[1]
|
|
text = torch.IntTensor(text_to_sequence(text, self.text_cleaners))
|
|
text = torch.cat([self.TEXT_START_TOKEN, text, self.TEXT_STOP_TOKEN], dim=0)
|
|
|
|
# Fetch quantized MELs
|
|
quant_path = audiopath.replace('wavs/', 'quantized_mels/') + '.pth'
|
|
filename = os.path.join(self.path, quant_path)
|
|
qmel = torch.load(filename)
|
|
qmel = torch.cat([self.MEL_START_TOKEN, qmel, self.MEL_STOP_TOKEN])
|
|
|
|
return text, qmel, audiopath
|
|
|
|
def __len__(self):
|
|
return len(self.audiopaths_and_text)
|
|
|
|
|
|
class GptTtsCollater():
|
|
MAX_SYMBOLS_PER_PHRASE = 200
|
|
NUMBER_SYMBOLS = len(symbols)
|
|
NUMBER_TEXT_TOKENS = NUMBER_SYMBOLS + MAX_SYMBOLS_PER_PHRASE + 2
|
|
|
|
def __init__(self, opt):
|
|
self.MEL_DICTIONARY_SIZE = opt['mel_vocab_size']+3
|
|
self.MEL_PAD_TOKEN = self.MEL_DICTIONARY_SIZE-1
|
|
|
|
def __call__(self, batch):
|
|
text_lens = [len(x[0]) for x in batch]
|
|
#max_text_len = max(text_lens)
|
|
max_text_len = self.MAX_SYMBOLS_PER_PHRASE # This forces all outputs to have the full 200 characters. Testing if this makes a difference.
|
|
mel_lens = [len(x[1]) for x in batch]
|
|
max_mel_len = max(mel_lens)
|
|
texts = []
|
|
qmels = []
|
|
# This is the sequential "background" tokens that are used as padding for text tokens, as specified in the DALLE paper.
|
|
text_range_embedding = torch.arange(max_text_len) + self.NUMBER_SYMBOLS
|
|
for b in batch:
|
|
text, qmel, _ = b
|
|
text = F.pad(text, (0, max_text_len-len(text)), value=0)
|
|
text = torch.where(text == 0, text_range_embedding, text)
|
|
texts.append(text)
|
|
qmels.append(F.pad(qmel, (0, max_mel_len-len(qmel)), value=self.MEL_PAD_TOKEN))
|
|
|
|
filenames = [j[2] for j in batch]
|
|
|
|
padded_qmel_gt = torch.stack(qmels)[:, 1:-1]
|
|
padded_qmel_gt = padded_qmel_gt * (padded_qmel_gt < 512)
|
|
|
|
return {
|
|
'padded_text': torch.stack(texts),
|
|
'input_lengths': LongTensor(text_lens),
|
|
'padded_qmel': torch.stack(qmels),
|
|
'padded_qmel_gt': padded_qmel_gt,
|
|
'output_lengths': LongTensor(mel_lens),
|
|
'filenames': filenames
|
|
}
|
|
|
|
|
|
if __name__ == '__main__':
|
|
params = {
|
|
'mode': 'gpt_tts',
|
|
'path': 'E:\\audio\\LJSpeech-1.1\\ljs_audio_text_train_filelist.txt',
|
|
'phase': 'train',
|
|
'n_workers': 0,
|
|
'batch_size': 16,
|
|
'mel_vocab_size': 512,
|
|
}
|
|
from data import create_dataset, create_dataloader
|
|
|
|
ds, c = create_dataset(params, return_collate=True)
|
|
dl = create_dataloader(ds, params, collate_fn=c)
|
|
i = 0
|
|
m = []
|
|
max_text = 0
|
|
max_mel = 0
|
|
for b in tqdm(dl):
|
|
max_mel = max(max_mel, b['padded_qmel'].shape[2])
|
|
max_text = max(max_text, b['padded_text'].shape[1])
|
|
m=torch.stack(m)
|
|
print(m.mean(), m.std())
|