forked from mrq/DL-Art-School
202 lines
7.6 KiB
Python
202 lines
7.6 KiB
Python
"""A multi-thread tool to crop large images to sub-images for faster IO."""
|
|
import os
|
|
import os.path as osp
|
|
import shutil
|
|
import subprocess
|
|
from time import sleep
|
|
|
|
import munch
|
|
import numpy as np
|
|
import cv2
|
|
import torchvision
|
|
from PIL import Image
|
|
import data.util as data_util # noqa: E402
|
|
import torch.utils.data as data
|
|
from tqdm import tqdm
|
|
import torch
|
|
import random
|
|
|
|
from models.flownet2.networks.resample2d_package.resample2d import Resample2d
|
|
from models.optical_flow.PWCNet import pwc_dc_net
|
|
|
|
|
|
def main():
|
|
opt = {}
|
|
opt['n_thread'] = 0
|
|
opt['compression_level'] = 95 # JPEG compression quality rating.
|
|
opt['dest'] = 'file'
|
|
opt['input_folder'] = 'D:\\dlas\\codes\\scripts\\test'
|
|
opt['save_folder'] = 'D:\\dlas\\codes\\scripts\\test_out'
|
|
opt['imgsize'] = 256
|
|
opt['bottom_crop'] = .1
|
|
opt['keep_folder'] = False
|
|
|
|
save_folder = opt['save_folder']
|
|
if not osp.exists(save_folder):
|
|
os.makedirs(save_folder)
|
|
print('mkdir [{:s}] ...'.format(save_folder))
|
|
|
|
go(opt)
|
|
|
|
|
|
def is_video(filename):
|
|
return any(filename.endswith(extension) for extension in ['.mp4', '.MP4', '.avi', '.AVI', '.mkv', '.MKV', '.wmv', '.WMV'])
|
|
|
|
|
|
def get_videos_in_path(path):
|
|
assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
|
|
videos = []
|
|
for dirpath, _, fnames in sorted(os.walk(path)):
|
|
for fname in sorted(fnames):
|
|
if is_video(fname):
|
|
videos.append(os.path.join(dirpath, fname))
|
|
return videos
|
|
|
|
def get_time_for_secs(secs):
|
|
mins = int(secs / 60)
|
|
hours = int(mins / 60)
|
|
secs = secs - (mins * 60) - (hours * 3600)
|
|
mins = mins % 60
|
|
return '%02d:%02d:%06.3f' % (hours, mins, secs)
|
|
|
|
class VideoClipDataset(data.Dataset):
|
|
def __init__(self, opt):
|
|
self.opt = opt
|
|
input_folder = opt['input_folder']
|
|
self.videos = get_videos_in_path(input_folder)
|
|
print("Found %i videos" % (len(self.videos),))
|
|
|
|
def __getitem__(self, index):
|
|
return self.get(index)
|
|
|
|
def extract_n_frames(self, video_file, dest, time_seconds, n):
|
|
ffmpeg_args = ['ffmpeg', '-y', '-ss', get_time_for_secs(time_seconds), '-i', video_file, '-vframes', str(n), f'{dest}/%d.jpg']
|
|
process = subprocess.Popen(ffmpeg_args, stderr=subprocess.DEVNULL, stdout=subprocess.DEVNULL)
|
|
process.wait()
|
|
|
|
def get_video_length(self, video_file):
|
|
result = subprocess.run(["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of",
|
|
"default=noprint_wrappers=1", video_file],
|
|
stdout=subprocess.PIPE,
|
|
stderr=subprocess.STDOUT)
|
|
return float(result.stdout.decode('utf-8').strip().replace("duration=", ""))
|
|
|
|
def get_image_tensor(self, path):
|
|
img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
|
|
|
|
# Access exceptions happen regularly, probably due to the subprocess not fully terminating.
|
|
for tries in range(5):
|
|
try:
|
|
os.remove(path)
|
|
break
|
|
except:
|
|
if tries >= 4:
|
|
assert False
|
|
else:
|
|
sleep(.1)
|
|
|
|
assert img is not None
|
|
assert len(img.shape) > 2
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.
|
|
# Crop off excess so image dimensions are a multiple of 64.
|
|
h, w, _ = img.shape
|
|
img = img[:(h//64)*64,:(w//64)*64,:]
|
|
return torch.from_numpy(np.ascontiguousarray(np.transpose(img, (2, 0, 1)))).float()
|
|
|
|
def get(self, index):
|
|
path = self.videos[index]
|
|
out_folder = self.opt['save_folder']
|
|
|
|
vid_len = int(self.get_video_length(path))
|
|
start = 2
|
|
img_runs = []
|
|
while start < vid_len:
|
|
frames_out = os.path.join(out_folder, f'{index}_{start}')
|
|
os.makedirs(frames_out, exist_ok=False)
|
|
n = random.randint(5, 30)
|
|
self.extract_n_frames(path, frames_out, start, n)
|
|
frames = data_util.find_files_of_type('img', frames_out)[0]
|
|
assert len(frames) == n
|
|
img_runs.append(([self.get_image_tensor(frame) for frame in frames], frames_out))
|
|
start += random.randint(2,5)
|
|
|
|
return img_runs
|
|
|
|
def __len__(self):
|
|
return len(self.videos)
|
|
|
|
|
|
def compute_flow_and_cleanup(flownet, runs):
|
|
resampler = Resample2d().cuda()
|
|
for run in runs:
|
|
run, path = run
|
|
consolidated_flows = None
|
|
a = run[0].unsqueeze(0).cuda()
|
|
img = a
|
|
dbg = a.clone()
|
|
for i in range(1,len(run)):
|
|
img2 = run[i].unsqueeze(0).cuda()
|
|
flow = flownet(torch.cat([img2, img], dim=1))
|
|
flow = torch.nn.functional.interpolate(flow, size=img.shape[2:], mode='bilinear')
|
|
if consolidated_flows is None:
|
|
consolidated_flows = flow
|
|
else:
|
|
consolidated_flows = resampler(flow, -consolidated_flows) + consolidated_flows
|
|
img = img2
|
|
dbg = resampler(dbg, flow)
|
|
torchvision.utils.save_image(dbg, os.path.join(path, "debug.jpg"))
|
|
consolidated_flows = torch.clamp(consolidated_flows / 255, -.5, .5)
|
|
b = run[-1].unsqueeze(0).cuda()
|
|
_, _, h, w = a.shape
|
|
direct_flows = torch.nn.functional.interpolate(torch.clamp(flownet(torch.cat([a, b], dim=1).float()) / 255, -.5, .5), size=img.shape[2:], mode='bilinear')
|
|
# TODO: Reshape image here.
|
|
'''
|
|
# Perform explicit crops first. These are generally used to get rid of watermarks so we dont even want to
|
|
# consider these areas of the image.
|
|
if 'bottom_crop' in self.opt.keys() and self.opt['bottom_crop'] > 0:
|
|
bc = self.opt['bottom_crop']
|
|
if bc > 0 and bc < 1:
|
|
bc = int(bc * img.shape[0])
|
|
img = img[:-bc, :, :]
|
|
|
|
h, w, c = img.shape
|
|
assert min(h,w) >= self.opt['imgsize']
|
|
|
|
# We must convert the image into a square.
|
|
dim = min(h, w)
|
|
# Crop the image so that only the center is left, since this is often the most salient part of the image.
|
|
img = img[(h - dim) // 2:dim + (h - dim) // 2, (w - dim) // 2:dim + (w - dim) // 2, :]
|
|
img = cv2.resize(img, (self.opt['imgsize'], self.opt['imgsize']), interpolation=cv2.INTER_AREA)
|
|
'''
|
|
|
|
torchvision.utils.save_image(a, os.path.join(path, "a.jpg"))
|
|
torchvision.utils.save_image(b, os.path.join(path, "b.jpg"))
|
|
torch.save(consolidated_flows * 255, os.path.join(path, "consolidated_flow.pt"))
|
|
torchvision.utils.save_image(torch.cat([consolidated_flows + .5, torch.zeros((1, 1, h, w), device='cuda')], dim=1), os.path.join(path, "consolidated_flow.png"))
|
|
|
|
# For debugging
|
|
torchvision.utils.save_image(resampler(a, consolidated_flows * 255), os.path.join(path, "b_flowed.jpg"))
|
|
torchvision.utils.save_image(resampler(b, -consolidated_flows * 255), os.path.join(path, "a_flowed.jpg"))
|
|
torchvision.utils.save_image(resampler(b, direct_flows * 255), os.path.join(path, "a_flowed_nonconsolidated.jpg"))
|
|
torchvision.utils.save_image(torch.cat([direct_flows + .5, torch.zeros((1, 1, h, w), device='cuda')], dim=1), os.path.join(path, "direct_flow.png"))
|
|
|
|
|
|
def identity(x):
|
|
return x
|
|
|
|
|
|
def go(opt):
|
|
flownet = pwc_dc_net('../experiments/pwc_humanflow.pth')
|
|
flownet.eval()
|
|
flownet = flownet.cuda()
|
|
|
|
dataset = VideoClipDataset(opt)
|
|
dataloader = data.DataLoader(dataset, num_workers=opt['n_thread'], collate_fn=identity)
|
|
with torch.no_grad():
|
|
for batch in tqdm(dataloader):
|
|
compute_flow_and_cleanup(flownet, batch[0])
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|