forked from mrq/DL-Art-School
187 lines
7.4 KiB
Python
187 lines
7.4 KiB
Python
"""A multi-thread tool to crop large images to sub-images for faster IO."""
|
|
import os
|
|
import os.path as osp
|
|
import sys
|
|
from multiprocessing import Pool
|
|
import numpy as np
|
|
import cv2
|
|
from PIL import Image
|
|
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
|
|
from utils.util import ProgressBar # noqa: E402
|
|
import data.util as data_util # noqa: E402
|
|
|
|
|
|
def main():
|
|
mode = 'single' # single (one input folder) | pair (extract corresponding GT and LR pairs)
|
|
split_img = False
|
|
opt = {}
|
|
opt['n_thread'] = 20
|
|
opt['compression_level'] = 90
|
|
# CV_IMWRITE_PNG_COMPRESSION from 0 to 9. A higher value means a smaller size and longer
|
|
# compression time. If read raw images during training, use 0 for faster IO speed.
|
|
if mode == 'single':
|
|
full_multiplier = .25
|
|
opt['input_folder'] = 'F:\\4k6k\\datasets\\images\\goodeats\\hq\\new_season\\lr_hr_enc\\lr\\images'
|
|
opt['save_folder'] = 'F:\\4k6k\\datasets\\images\\goodeats\\hq\\new_season\\lr_hr_enc\\lr\\images_tiled'
|
|
opt['crop_sz'] = int(256 * full_multiplier) # the size of each sub-image
|
|
opt['step'] = int(128 * full_multiplier) # step of the sliding crop window
|
|
opt['thres_sz'] = int(64 * full_multiplier) # size threshold
|
|
opt['image_minimum_size_threshold'] = int(1024 * full_multiplier) # Minimum size of input image in height dim. Images under this size will not be processed.
|
|
opt['resize_final_img'] = .5
|
|
opt['only_resize'] = False
|
|
extract_single(opt, split_img)
|
|
elif mode == 'pair':
|
|
GT_folder = '../../datasets/div2k/DIV2K_train_HR'
|
|
LR_folder = '../../datasets/div2k/DIV2K_train_LR_bicubic/X4'
|
|
save_GT_folder = '../../datasets/div2k/DIV2K800_sub'
|
|
save_LR_folder = '../../datasets/div2k/DIV2K800_sub_bicLRx4'
|
|
scale_ratio = 4
|
|
crop_sz = 480 # the size of each sub-image (GT)
|
|
step = 240 # step of the sliding crop window (GT)
|
|
thres_sz = 48 # size threshold
|
|
########################################################################
|
|
# check that all the GT and LR images have correct scale ratio
|
|
img_GT_list = data_util._get_paths_from_images(GT_folder)
|
|
img_LR_list = data_util._get_paths_from_images(LR_folder)
|
|
assert len(img_GT_list) == len(img_LR_list), 'different length of GT_folder and LR_folder.'
|
|
for path_GT, path_LR in zip(img_GT_list, img_LR_list):
|
|
img_GT = Image.open(path_GT)
|
|
img_LR = Image.open(path_LR)
|
|
w_GT, h_GT = img_GT.size
|
|
w_LR, h_LR = img_LR.size
|
|
assert w_GT / w_LR == scale_ratio, 'GT width [{:d}] is not {:d}X as LR weight [{:d}] for {:s}.'.format( # noqa: E501
|
|
w_GT, scale_ratio, w_LR, path_GT)
|
|
assert w_GT / w_LR == scale_ratio, 'GT width [{:d}] is not {:d}X as LR weight [{:d}] for {:s}.'.format( # noqa: E501
|
|
w_GT, scale_ratio, w_LR, path_GT)
|
|
# check crop size, step and threshold size
|
|
assert crop_sz % scale_ratio == 0, 'crop size is not {:d}X multiplication.'.format(
|
|
scale_ratio)
|
|
assert step % scale_ratio == 0, 'step is not {:d}X multiplication.'.format(scale_ratio)
|
|
assert thres_sz % scale_ratio == 0, 'thres_sz is not {:d}X multiplication.'.format(
|
|
scale_ratio)
|
|
print('process GT...')
|
|
opt['input_folder'] = GT_folder
|
|
opt['save_folder'] = save_GT_folder
|
|
opt['crop_sz'] = crop_sz
|
|
opt['step'] = step
|
|
opt['thres_sz'] = thres_sz
|
|
extract_single(opt)
|
|
print('process LR...')
|
|
opt['input_folder'] = LR_folder
|
|
opt['save_folder'] = save_LR_folder
|
|
opt['crop_sz'] = crop_sz // scale_ratio
|
|
opt['step'] = step // scale_ratio
|
|
opt['thres_sz'] = thres_sz // scale_ratio
|
|
extract_single(opt)
|
|
assert len(data_util._get_paths_from_images(save_GT_folder)) == len(
|
|
data_util._get_paths_from_images(
|
|
save_LR_folder)), 'different length of save_GT_folder and save_LR_folder.'
|
|
else:
|
|
raise ValueError('Wrong mode.')
|
|
|
|
def extract_single(opt, split_img=False):
|
|
input_folder = opt['input_folder']
|
|
save_folder = opt['save_folder']
|
|
if not osp.exists(save_folder):
|
|
os.makedirs(save_folder)
|
|
print('mkdir [{:s}] ...'.format(save_folder))
|
|
img_list = data_util._get_paths_from_images(input_folder)
|
|
|
|
def update(arg):
|
|
pbar.update(arg)
|
|
|
|
pbar = ProgressBar(len(img_list))
|
|
|
|
pool = Pool(opt['n_thread']) if opt['n_thread'] >= 1 else None
|
|
for path in img_list:
|
|
# If this fails, change it and the imwrite below to the write extension.
|
|
assert ".jpg" in path
|
|
if pool:
|
|
if split_img:
|
|
pool.apply_async(worker, args=(path, opt, True, False), callback=update)
|
|
pool.apply_async(worker, args=(path, opt, True, True), callback=update)
|
|
else:
|
|
pool.apply_async(worker, args=(path, opt), callback=update)
|
|
else:
|
|
assert not split_img
|
|
worker(path, opt)
|
|
pool.close()
|
|
pool.join()
|
|
print('All subprocesses done.')
|
|
|
|
|
|
def worker(path, opt, split_mode=False, left_img=True):
|
|
crop_sz = opt['crop_sz']
|
|
step = opt['step']
|
|
thres_sz = opt['thres_sz']
|
|
only_resize = opt['only_resize']
|
|
img_name = osp.basename(path)
|
|
img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
|
|
|
|
n_channels = len(img.shape)
|
|
if n_channels == 2:
|
|
h, w = img.shape
|
|
elif n_channels == 3:
|
|
h, w, c = img.shape
|
|
else:
|
|
raise ValueError('Wrong image shape - {}'.format(n_channels))
|
|
|
|
# Uncomment to filter any image that doesnt meet a threshold size.
|
|
if min(h,w) < opt['image_minimum_size_threshold']:
|
|
return
|
|
left = 0
|
|
right = w
|
|
if split_mode:
|
|
if left_img:
|
|
left = 0
|
|
right = int(w/2)
|
|
else:
|
|
left = int(w/2)
|
|
right = w
|
|
w = int(w/2)
|
|
img = img[:, left:right]
|
|
|
|
h_space = np.arange(0, h - crop_sz + 1, step)
|
|
if h - (h_space[-1] + crop_sz) > thres_sz:
|
|
h_space = np.append(h_space, h - crop_sz)
|
|
w_space = np.arange(0, w - crop_sz + 1, step)
|
|
if w - (w_space[-1] + crop_sz) > thres_sz:
|
|
w_space = np.append(w_space, w - crop_sz)
|
|
|
|
dsize = None
|
|
if only_resize:
|
|
dsize = (crop_sz, crop_sz)
|
|
if h < w:
|
|
h_space = [0]
|
|
w_space = [(w - h) // 2]
|
|
crop_sz = h
|
|
else:
|
|
h_space = [(h - w) // 2]
|
|
w_space = [0]
|
|
crop_sz = w
|
|
|
|
index = 0
|
|
for x in h_space:
|
|
for y in w_space:
|
|
index += 1
|
|
if n_channels == 2:
|
|
crop_img = img[x:x + crop_sz, y:y + crop_sz]
|
|
else:
|
|
crop_img = img[x:x + crop_sz, y:y + crop_sz, :]
|
|
crop_img = np.ascontiguousarray(crop_img)
|
|
if 'resize_final_img' in opt.keys():
|
|
# Resize too.
|
|
resize_factor = opt['resize_final_img']
|
|
if dsize is None:
|
|
dsize = (int(crop_img.shape[0] * resize_factor), int(crop_img.shape[1] * resize_factor))
|
|
crop_img = cv2.resize(crop_img, dsize, interpolation = cv2.INTER_AREA)
|
|
cv2.imwrite(
|
|
osp.join(opt['save_folder'],
|
|
img_name.replace('.jpg', '_l{:05d}_s{:03d}.jpg'.format(left, index))), crop_img,
|
|
[cv2.IMWRITE_JPEG_QUALITY, opt['compression_level']])
|
|
return 'Processing {:s} ...'.format(img_name)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|