DL-Art-School/codes/models/gpt_voice/transformer_builders.py

86 lines
3.3 KiB
Python

"""
A list of functions that map a unified set of arguments to a fully built transformer. Also includes some testing
utilities for measuring parameter count, FLOPS, and general performance of each type.
Every function contains the following arguments:
layers: Net number of layers in the transformer.
model_dim: Hidden dimensionality of the model.
heads: Number of attention heads.
num_tokens: Number of possible tokens in the transformer's dictionary. Do not use this in future releases.
max_seq_len: Maximum sequence length to attend to.
checkpointing: Whether or not the underlying implementation should support gradient checkpointing.
"""
import functools
from time import time
import torch
from tqdm import tqdm
def null_position_embeddings(range, dim):
return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device)
def build_hf_gpt_transformer(layers, model_dim, heads, num_tokens, max_seq_len, checkpointing):
"""
GPT-2 implemented by the HuggingFace library.
"""
from transformers import GPT2Config, GPT2Model
gpt_config = GPT2Config(vocab_size=num_tokens,
n_positions=max_seq_len,
n_ctx=max_seq_len,
n_embd=model_dim,
n_layer=layers,
n_head=heads,
gradient_checkpointing=checkpointing,
use_cache=not checkpointing)
gpt = GPT2Model(gpt_config)
# Override the built in positional embeddings
del gpt.wpe
gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim)
# Built-in token embeddings are unused.
del gpt.wte
return gpt
def build_lr_performer(layers, model_dim, heads, num_tokens, max_seq_len, checkpointing):
"""
lucidrains Performer implementation, https://github.com/lucidrains/performer-pytorch
"""
from models.lucidrains.performer.performer_pytorch import PerformerLM
model = PerformerLM(dim=model_dim, depth=layers, heads=heads, dim_head=model_dim, causal=True,
num_tokens=num_tokens, max_seq_len=max_seq_len)
return model
def build_lr_reformer(layers, model_dim, heads, num_tokens, max_seq_len, checkpointing):
"""
lucidrains Reformer implementation, https://github.com/lucidrains/reformer-pytorch
"""
pass
def build_lr_xformer(layers, model_dim, heads, num_tokens, max_seq_len, checkpointing):
"""
lucidrains x-transformer implementation, https://github.com/lucidrains/x-transformers
"""
pass
def test_all_performance(**kwargs):
transformer_builders = [#build_hf_gpt_transformer,
build_lr_performer,]
# build_lr_reformer,
# build_lr_xformer]
for builder in transformer_builders:
model = builder(**kwargs)
start = time()
args = torch.randint(0, 8192, (16,450))
for k in tqdm(range(10)):
model(args)
stop = time()
print(f"Model: {str(builder)}; Elapsed: {stop-start}")
if __name__ == '__main__':
test_all_performance(layers=12, model_dim=512, heads=8, num_tokens=8192, max_seq_len=1000, checkpointing=False)