ai-voice-cloning-de/src/webui.py

618 lines
21 KiB
Python
Raw Normal View History

2023-02-17 00:08:27 +00:00
import os
import argparse
import time
import json
import base64
import re
import urllib.request
import torch
import torchaudio
import music_tag
import gradio as gr
import gradio.utils
from datetime import datetime
import tortoise.api
from tortoise.utils.audio import get_voice_dir, get_voices
2023-02-17 00:08:27 +00:00
from utils import *
args = setup_args()
2023-02-17 03:05:27 +00:00
def run_generation(
text,
delimiter,
emotion,
prompt,
voice,
mic_audio,
voice_latents_chunks,
seed,
candidates,
num_autoregressive_samples,
diffusion_iterations,
temperature,
diffusion_sampler,
breathing_room,
cvvp_weight,
top_p,
diffusion_temperature,
length_penalty,
repetition_penalty,
cond_free_k,
experimental_checkboxes,
progress=gr.Progress(track_tqdm=True)
):
try:
sample, outputs, stats = generate(
text=text,
delimiter=delimiter,
emotion=emotion,
prompt=prompt,
voice=voice,
mic_audio=mic_audio,
voice_latents_chunks=voice_latents_chunks,
seed=seed,
candidates=candidates,
num_autoregressive_samples=num_autoregressive_samples,
diffusion_iterations=diffusion_iterations,
temperature=temperature,
diffusion_sampler=diffusion_sampler,
breathing_room=breathing_room,
cvvp_weight=cvvp_weight,
top_p=top_p,
diffusion_temperature=diffusion_temperature,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
cond_free_k=cond_free_k,
experimental_checkboxes=experimental_checkboxes,
progress=progress
2023-02-17 03:05:27 +00:00
)
except Exception as e:
message = str(e)
if message == "Kill signal detected":
reload_tts()
raise gr.Error(message)
return (
outputs[0],
gr.update(value=sample, visible=sample is not None),
gr.update(choices=outputs, value=outputs[0], visible=len(outputs) > 1, interactive=True),
gr.update(visible=len(outputs) > 1),
gr.update(value=stats, visible=True),
)
2023-02-17 00:08:27 +00:00
def update_presets(value):
PRESETS = {
'Ultra Fast': {'num_autoregressive_samples': 16, 'diffusion_iterations': 30, 'cond_free': False},
'Fast': {'num_autoregressive_samples': 96, 'diffusion_iterations': 80},
'Standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 200},
'High Quality': {'num_autoregressive_samples': 256, 'diffusion_iterations': 400},
}
if value in PRESETS:
preset = PRESETS[value]
return (gr.update(value=preset['num_autoregressive_samples']), gr.update(value=preset['diffusion_iterations']))
else:
return (gr.update(), gr.update())
def get_training_configs():
configs = []
for i, file in enumerate(sorted(os.listdir(f"./training/"))):
if file[-5:] != ".yaml" or file[0] == ".":
continue
configs.append(f"./training/{file}")
return configs
def update_training_configs():
return gr.update(choices=get_training_list())
history_headers = {
"Name": "",
"Samples": "num_autoregressive_samples",
"Iterations": "diffusion_iterations",
"Temp.": "temperature",
"Sampler": "diffusion_sampler",
"CVVP": "cvvp_weight",
"Top P": "top_p",
"Diff. Temp.": "diffusion_temperature",
"Len Pen": "length_penalty",
"Rep Pen": "repetition_penalty",
"Cond-Free K": "cond_free_k",
"Time": "time",
}
def history_view_results( voice ):
results = []
files = []
outdir = f"./results/{voice}/"
for i, file in enumerate(sorted(os.listdir(outdir))):
if file[-4:] != ".wav":
continue
metadata, _ = read_generate_settings(f"{outdir}/{file}", read_latents=False)
if metadata is None:
continue
values = []
for k in history_headers:
v = file
if k != "Name":
2023-02-18 20:56:34 +00:00
v = metadata[history_headers[k]]
values.append(v)
files.append(file)
results.append(values)
return (
results,
gr.Dropdown.update(choices=sorted(files))
)
def import_voices_proxy(files, name, progress=gr.Progress(track_tqdm=True)):
import_voices(files, name, progress)
return gr.update()
def read_generate_settings_proxy(file, saveAs='.temp'):
j, latents = read_generate_settings(file)
if latents:
outdir = f'{get_voice_dir()}/{saveAs}/'
os.makedirs(outdir, exist_ok=True)
with open(f'{outdir}/cond_latents.pth', 'wb') as f:
f.write(latents)
latents = f'{outdir}/cond_latents.pth'
return (
gr.update(value=j, visible=j is not None),
gr.update(visible=j is not None),
gr.update(value=latents, visible=latents is not None),
None if j is None else j['voice']
)
def prepare_dataset_proxy( voice, language, progress=gr.Progress(track_tqdm=True) ):
return prepare_dataset( get_voices(load_latents=False)[voice], outdir=f"./training/{voice}/", language=language, progress=progress )
def optimize_training_settings_proxy( *args, **kwargs ):
tup = optimize_training_settings(*args, **kwargs)
return (
gr.update(value=tup[0]),
gr.update(value=tup[1]),
gr.update(value=tup[2]),
gr.update(value=tup[3]),
gr.update(value=tup[4]),
gr.update(value=tup[5]),
gr.update(value=tup[6]),
"\n".join(tup[7])
)
def save_training_settings_proxy( epochs, batch_size, learning_rate, learning_rate_schedule, mega_batch_factor, print_rate, save_rate, resume_path, voice ):
name = f"{voice}-finetune"
dataset_name = f"{voice}-train"
dataset_path = f"./training/{voice}/train.txt"
validation_name = f"{voice}-val"
validation_path = f"./training/{voice}/train.txt"
with open(dataset_path, 'r', encoding="utf-8") as f:
lines = len(f.readlines())
messages = []
iterations = calc_iterations(epochs=epochs, lines=lines, batch_size=batch_size)
messages.append(f"For {epochs} epochs with {lines} lines, iterating for {iterations} steps")
messages.append(save_training_settings(
iterations=iterations,
batch_size=batch_size,
learning_rate=learning_rate,
learning_rate_schedule=learning_rate_schedule,
mega_batch_factor=mega_batch_factor,
print_rate=print_rate,
save_rate=save_rate,
name=name,
dataset_name=dataset_name,
dataset_path=dataset_path,
validation_name=validation_name,
validation_path=validation_path,
output_name=f"{voice}/train.yaml",
resume_path=resume_path,
))
return "\n".join(messages)
def update_voices():
return (
gr.Dropdown.update(choices=get_voice_list()),
gr.Dropdown.update(choices=get_voice_list()),
gr.Dropdown.update(choices=get_voice_list("./results/")),
)
def history_copy_settings( voice, file ):
return import_generate_settings( f"./results/{voice}/{file}" )
def update_model_settings( autoregressive_model, whisper_model ):
update_autoregressive_model(autoregressive_model)
update_whisper_model(whisper_model)
save_args_settings()
2023-02-17 00:08:27 +00:00
def setup_gradio():
global args
global ui
if not args.share:
def noop(function, return_value=None):
def wrapped(*args, **kwargs):
return return_value
return wrapped
gradio.utils.version_check = noop(gradio.utils.version_check)
gradio.utils.initiated_analytics = noop(gradio.utils.initiated_analytics)
gradio.utils.launch_analytics = noop(gradio.utils.launch_analytics)
gradio.utils.integration_analytics = noop(gradio.utils.integration_analytics)
gradio.utils.error_analytics = noop(gradio.utils.error_analytics)
gradio.utils.log_feature_analytics = noop(gradio.utils.log_feature_analytics)
#gradio.utils.get_local_ip_address = noop(gradio.utils.get_local_ip_address, 'localhost')
if args.models_from_local_only:
os.environ['TRANSFORMERS_OFFLINE']='1'
with gr.Blocks() as ui:
with gr.Tab("Generate"):
with gr.Row():
with gr.Column():
text = gr.Textbox(lines=4, label="Prompt")
with gr.Row():
with gr.Column():
delimiter = gr.Textbox(lines=1, label="Line Delimiter", placeholder="\\n")
emotion = gr.Radio( ["Happy", "Sad", "Angry", "Disgusted", "Arrogant", "Custom"], value="Custom", label="Emotion", type="value", interactive=True )
2023-02-17 00:08:27 +00:00
prompt = gr.Textbox(lines=1, label="Custom Emotion + Prompt (if selected)")
voice = gr.Dropdown(get_voice_list(), label="Voice", type="value")
mic_audio = gr.Audio( label="Microphone Source", source="microphone", type="filepath" )
2023-02-17 00:08:27 +00:00
refresh_voices = gr.Button(value="Refresh Voice List")
voice_latents_chunks = gr.Slider(label="Voice Chunks", minimum=1, maximum=64, value=1, step=1)
recompute_voice_latents = gr.Button(value="(Re)Compute Voice Latents")
with gr.Column():
candidates = gr.Slider(value=1, minimum=1, maximum=6, step=1, label="Candidates")
seed = gr.Number(value=0, precision=0, label="Seed")
preset = gr.Radio( ["Ultra Fast", "Fast", "Standard", "High Quality"], label="Preset", type="value" )
2023-02-17 00:08:27 +00:00
num_autoregressive_samples = gr.Slider(value=128, minimum=0, maximum=512, step=1, label="Samples")
diffusion_iterations = gr.Slider(value=128, minimum=0, maximum=512, step=1, label="Iterations")
temperature = gr.Slider(value=0.2, minimum=0, maximum=1, step=0.1, label="Temperature")
breathing_room = gr.Slider(value=8, minimum=1, maximum=32, step=1, label="Pause Size")
diffusion_sampler = gr.Radio(
["P", "DDIM"], # + ["K_Euler_A", "DPM++2M"],
value="P", label="Diffusion Samplers", type="value" )
2023-02-17 00:08:27 +00:00
show_experimental_settings = gr.Checkbox(label="Show Experimental Settings")
reset_generation_settings_button = gr.Button(value="Reset to Default")
with gr.Column(visible=False) as col:
experimental_column = col
experimental_checkboxes = gr.CheckboxGroup(["Half Precision", "Conditioning-Free"], value=["Conditioning-Free"], label="Experimental Flags")
cvvp_weight = gr.Slider(value=0, minimum=0, maximum=1, label="CVVP Weight")
top_p = gr.Slider(value=0.8, minimum=0, maximum=1, label="Top P")
diffusion_temperature = gr.Slider(value=1.0, minimum=0, maximum=1, label="Diffusion Temperature")
length_penalty = gr.Slider(value=1.0, minimum=0, maximum=8, label="Length Penalty")
repetition_penalty = gr.Slider(value=2.0, minimum=0, maximum=8, label="Repetition Penalty")
cond_free_k = gr.Slider(value=2.0, minimum=0, maximum=4, label="Conditioning-Free K")
with gr.Column():
submit = gr.Button(value="Generate")
stop = gr.Button(value="Stop")
generation_results = gr.Dataframe(label="Results", headers=["Seed", "Time"], visible=False)
source_sample = gr.Audio(label="Source Sample", visible=False)
output_audio = gr.Audio(label="Output")
candidates_list = gr.Dropdown(label="Candidates", type="value", visible=False)
output_pick = gr.Button(value="Select Candidate", visible=False)
with gr.Tab("History"):
with gr.Row():
with gr.Column():
history_info = gr.Dataframe(label="Results", headers=list(history_headers.keys()))
2023-02-17 00:08:27 +00:00
with gr.Row():
with gr.Column():
history_voices = gr.Dropdown(choices=get_voice_list("./results/"), label="Voice", type="value")
2023-02-17 00:08:27 +00:00
history_view_results_button = gr.Button(value="View Files")
with gr.Column():
history_results_list = gr.Dropdown(label="Results",type="value", interactive=True)
history_view_result_button = gr.Button(value="View File")
with gr.Column():
history_audio = gr.Audio()
history_copy_settings_button = gr.Button(value="Copy Settings")
with gr.Tab("Utilities"):
with gr.Row():
with gr.Column():
audio_in = gr.Files(type="file", label="Audio Input", file_types=["audio"])
2023-02-17 00:08:27 +00:00
import_voice_name = gr.Textbox(label="Voice Name")
import_voice_button = gr.Button(value="Import Voice")
with gr.Column():
metadata_out = gr.JSON(label="Audio Metadata", visible=False)
copy_button = gr.Button(value="Copy Settings", visible=False)
latents_out = gr.File(type="binary", label="Voice Latents", visible=False)
2023-02-17 03:05:27 +00:00
with gr.Tab("Training"):
with gr.Tab("Prepare Dataset"):
2023-02-17 03:05:27 +00:00
with gr.Row():
with gr.Column():
dataset_settings = [
gr.Dropdown( get_voice_list(), label="Dataset Source", type="value" ),
gr.Textbox(label="Language", placeholder="English")
]
prepare_dataset_button = gr.Button(value="Prepare")
with gr.Column():
prepare_dataset_output = gr.TextArea(label="Console Output", interactive=False, max_lines=8)
with gr.Tab("Generate Configuration"):
with gr.Row():
2023-02-17 03:05:27 +00:00
with gr.Column():
training_settings = [
gr.Slider(label="Epochs", minimum=0, maximum=500, value=10),
2023-02-18 15:50:51 +00:00
gr.Slider(label="Batch Size", minimum=2, maximum=128, value=64),
2023-02-17 03:05:27 +00:00
gr.Slider(label="Learning Rate", value=1e-5, minimum=0, maximum=1e-4, step=1e-6),
gr.Textbox(label="Learning Rate Schedule", placeholder="[ 100, 200, 300, 400 ]"),
gr.Slider(label="Mega Batch Factor", minimum=1, maximum=16, value=4, step=1),
2023-02-17 03:05:27 +00:00
gr.Number(label="Print Frequency", value=50),
gr.Number(label="Save Frequency", value=50),
gr.Textbox(label="Resume State Path", placeholder="./training/${voice}-finetune/training_state/${last_state}.state"),
2023-02-17 03:05:27 +00:00
]
dataset_list = gr.Dropdown( get_dataset_list(), label="Dataset", type="value" )
training_settings = training_settings + [ dataset_list ]
refresh_dataset_list = gr.Button(value="Refresh Dataset List")
"""
2023-02-17 03:05:27 +00:00
training_settings = training_settings + [
gr.Textbox(label="Training Name", placeholder="finetune"),
gr.Textbox(label="Dataset Name", placeholder="finetune"),
gr.Textbox(label="Dataset Path", placeholder="./training/finetune/train.txt"),
2023-02-17 03:05:27 +00:00
gr.Textbox(label="Validation Name", placeholder="finetune"),
gr.Textbox(label="Validation Path", placeholder="./training/finetune/train.txt"),
2023-02-17 03:05:27 +00:00
]
"""
with gr.Column():
save_yaml_output = gr.TextArea(label="Console Output", interactive=False, max_lines=8)
optimize_yaml_button = gr.Button(value="Validate Training Configuration")
save_yaml_button = gr.Button(value="Save Training Configuration")
with gr.Tab("Run Training"):
with gr.Row():
with gr.Column():
training_configs = gr.Dropdown(label="Training Configuration", choices=get_training_list())
verbose_training = gr.Checkbox(label="Verbose Training")
training_buffer_size = gr.Slider(label="Buffer Size", minimum=4, maximum=32, value=8)
refresh_configs = gr.Button(value="Refresh Configurations")
start_training_button = gr.Button(value="Train")
stop_training_button = gr.Button(value="Stop")
with gr.Column():
training_output = gr.TextArea(label="Console Output", interactive=False, max_lines=8)
2023-02-17 00:08:27 +00:00
with gr.Tab("Settings"):
with gr.Row():
exec_inputs = []
with gr.Column():
exec_inputs = exec_inputs + [
gr.Textbox(label="Listen", value=args.listen, placeholder="127.0.0.1:7860/"),
gr.Checkbox(label="Public Share Gradio", value=args.share),
gr.Checkbox(label="Check For Updates", value=args.check_for_updates),
gr.Checkbox(label="Only Load Models Locally", value=args.models_from_local_only),
gr.Checkbox(label="Low VRAM", value=args.low_vram),
gr.Checkbox(label="Embed Output Metadata", value=args.embed_output_metadata),
gr.Checkbox(label="Slimmer Computed Latents", value=args.latents_lean_and_mean),
gr.Checkbox(label="Voice Fixer", value=args.voice_fixer),
gr.Checkbox(label="Use CUDA for Voice Fixer", value=args.voice_fixer_use_cuda),
gr.Checkbox(label="Force CPU for Conditioning Latents", value=args.force_cpu_for_conditioning_latents),
gr.Checkbox(label="Defer TTS Load", value=args.defer_tts_load),
2023-02-17 00:08:27 +00:00
gr.Textbox(label="Device Override", value=args.device_override),
]
with gr.Column():
exec_inputs = exec_inputs + [
gr.Number(label="Sample Batch Size", precision=0, value=args.sample_batch_size),
gr.Number(label="Concurrency Count", precision=0, value=args.concurrency_count),
gr.Number(label="Ouptut Sample Rate", precision=0, value=args.output_sample_rate),
gr.Slider(label="Ouptut Volume", minimum=0, maximum=2, value=args.output_volume),
]
autoregressive_model_dropdown = gr.Dropdown(get_autoregressive_models(), label="Autoregressive Model", value=args.autoregressive_model)
whisper_model_dropdown = gr.Dropdown(["tiny", "tiny.en", "base", "base.en", "small", "small.en", "medium", "medium.en", "large"], label="Whisper Model", value=args.whisper_model)
save_settings_button = gr.Button(value="Save Settings")
gr.Button(value="Check for Updates").click(check_for_updates)
gr.Button(value="(Re)Load TTS").click(reload_tts)
2023-02-17 00:08:27 +00:00
for i in exec_inputs:
i.change( fn=update_args, inputs=exec_inputs )
# console_output = gr.TextArea(label="Console Output", interactive=False, max_lines=8)
2023-02-17 00:08:27 +00:00
input_settings = [
text,
delimiter,
emotion,
prompt,
voice,
mic_audio,
voice_latents_chunks,
seed,
candidates,
num_autoregressive_samples,
diffusion_iterations,
temperature,
diffusion_sampler,
breathing_room,
cvvp_weight,
top_p,
diffusion_temperature,
length_penalty,
repetition_penalty,
cond_free_k,
experimental_checkboxes,
]
history_view_results_button.click(
fn=history_view_results,
inputs=history_voices,
outputs=[
history_info,
history_results_list,
]
)
history_view_result_button.click(
fn=lambda voice, file: f"./results/{voice}/{file}",
inputs=[
history_voices,
history_results_list,
],
outputs=history_audio
)
audio_in.upload(
fn=read_generate_settings_proxy,
inputs=audio_in,
outputs=[
metadata_out,
copy_button,
latents_out,
import_voice_name
]
)
import_voice_button.click(
fn=import_voices_proxy,
inputs=[
audio_in,
import_voice_name,
],
outputs=import_voice_name #console_output
)
show_experimental_settings.change(
fn=lambda x: gr.update(visible=x),
inputs=show_experimental_settings,
outputs=experimental_column
)
preset.change(fn=update_presets,
inputs=preset,
outputs=[
num_autoregressive_samples,
diffusion_iterations,
],
)
recompute_voice_latents.click(compute_latents,
inputs=[
voice,
voice_latents_chunks,
],
outputs=voice,
)
prompt.change(fn=lambda value: gr.update(value="Custom"),
inputs=prompt,
outputs=emotion
)
mic_audio.change(fn=lambda value: gr.update(value="microphone"),
inputs=mic_audio,
outputs=voice
)
2023-02-17 00:08:27 +00:00
refresh_voices.click(update_voices,
inputs=None,
outputs=[
voice,
dataset_settings[0],
2023-02-17 00:08:27 +00:00
history_voices
]
)
output_pick.click(
lambda x: x,
inputs=candidates_list,
outputs=output_audio,
)
submit.click(
lambda: (gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)),
outputs=[source_sample, candidates_list, output_pick, generation_results],
)
submit_event = submit.click(run_generation,
inputs=input_settings,
outputs=[output_audio, source_sample, candidates_list, output_pick, generation_results],
)
copy_button.click(import_generate_settings,
inputs=audio_in, # JSON elements cannot be used as inputs
outputs=input_settings
)
reset_generation_settings_button.click(
fn=reset_generation_settings,
inputs=None,
outputs=input_settings
)
history_copy_settings_button.click(history_copy_settings,
inputs=[
history_voices,
history_results_list,
],
outputs=input_settings
)
refresh_configs.click(
lambda: gr.update(choices=get_training_list()),
inputs=None,
outputs=training_configs
)
start_training_button.click(run_training,
inputs=[
training_configs,
verbose_training,
training_buffer_size,
],
outputs=training_output #console_output
)
stop_training_button.click(stop_training,
inputs=None,
outputs=training_output #console_output
)
prepare_dataset_button.click(
prepare_dataset_proxy,
inputs=dataset_settings,
outputs=prepare_dataset_output #console_output
)
refresh_dataset_list.click(
lambda: gr.update(choices=get_dataset_list()),
inputs=None,
outputs=dataset_list,
)
optimize_yaml_button.click(optimize_training_settings_proxy,
inputs=training_settings,
outputs=training_settings[1:8] + [save_yaml_output] #console_output
)
save_yaml_button.click(save_training_settings_proxy,
inputs=training_settings,
outputs=save_yaml_output #console_output
)
save_settings_button.click(update_model_settings,
inputs=[
autoregressive_model_dropdown,
whisper_model_dropdown,
],
outputs=None
)
2023-02-17 00:08:27 +00:00
if os.path.isfile('./config/generate.json'):
ui.load(import_generate_settings, inputs=None, outputs=input_settings)
if args.check_for_updates:
ui.load(check_for_updates)
stop.click(fn=cancel_generate, inputs=None, outputs=None, cancels=[submit_event])
ui.queue(concurrency_count=args.concurrency_count)
webui = ui
return webui