ai-voice-cloning-de/src/utils.py
2023-03-14 05:02:14 +00:00

2264 lines
76 KiB
Python
Executable File

import os
if 'XDG_CACHE_HOME' not in os.environ:
os.environ['XDG_CACHE_HOME'] = os.path.realpath(os.path.join(os.getcwd(), './models/'))
if 'TORTOISE_MODELS_DIR' not in os.environ:
os.environ['TORTOISE_MODELS_DIR'] = os.path.realpath(os.path.join(os.getcwd(), './models/tortoise/'))
if 'TRANSFORMERS_CACHE' not in os.environ:
os.environ['TRANSFORMERS_CACHE'] = os.path.realpath(os.path.join(os.getcwd(), './models/transformers/'))
import argparse
import time
import json
import base64
import re
import urllib.request
import signal
import gc
import subprocess
import psutil
import yaml
import hashlib
import io
import gzip
import tqdm
import torch
import torchaudio
import music_tag
import gradio as gr
import gradio.utils
import pandas as pd
from datetime import datetime
from datetime import timedelta
from tortoise.api import TextToSpeech, MODELS, get_model_path, pad_or_truncate
from tortoise.utils.audio import load_audio, load_voice, load_voices, get_voice_dir, get_voices
from tortoise.utils.text import split_and_recombine_text
from tortoise.utils.device import get_device_name, set_device_name, get_device_count, get_device_vram, do_gc
from whisper.normalizers.english import EnglishTextNormalizer
MODELS['dvae.pth'] = "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/3704aea61678e7e468a06d8eea121dba368a798e/.models/dvae.pth"
WHISPER_MODELS = ["tiny", "base", "small", "medium", "large"]
WHISPER_SPECIALIZED_MODELS = ["tiny.en", "base.en", "small.en", "medium.en"]
WHISPER_BACKENDS = ["openai/whisper", "lightmare/whispercpp"]
VOCODERS = ['univnet', 'bigvgan_base_24khz_100band', 'bigvgan_24khz_100band']
TTSES = ['tortoise'] # + ['vall-e']
GENERATE_SETTINGS_ARGS = None
LEARNING_RATE_SCHEMES = {"Multistep": "MultiStepLR", "Cos. Annealing": "CosineAnnealingLR_Restart"}
LEARNING_RATE_SCHEDULE = [ 2, 4, 9, 18, 25, 33, 50 ]
RESAMPLERS = {}
MIN_TRAINING_DURATION = 0.6
MAX_TRAINING_DURATION = 11.6097505669
VALLE_ENABLED = False
try:
from vall_e.emb.qnt import encode as quantize
from vall_e.emb.g2p import encode as phonemize
VALLE_ENABLED = True
except Exception as e:
pass
args = None
tts = None
tts_loading = False
webui = None
voicefixer = None
whisper_model = None
training_state = None
current_voice = None
def resample( waveform, input_rate, output_rate=44100 ):
# mono-ize
waveform = torch.mean(waveform, dim=0, keepdim=True)
if input_rate == output_rate:
return waveform, output_rate
key = f'{input_rate}:{output_rate}'
if not key in RESAMPLERS:
RESAMPLERS[key] = torchaudio.transforms.Resample(
input_rate,
output_rate,
lowpass_filter_width=16,
rolloff=0.85,
resampling_method="kaiser_window",
beta=8.555504641634386,
)
return RESAMPLERS[key]( waveform ), output_rate
def generate(**kwargs):
parameters = {}
parameters.update(kwargs)
voice = parameters['voice']
progress = parameters['progress'] if 'progress' in parameters else None
if parameters['seed'] == 0:
parameters['seed'] = None
usedSeed = parameters['seed']
global args
global tts
unload_whisper()
unload_voicefixer()
if not tts:
# should check if it's loading or unloaded, and load it if it's unloaded
if tts_loading:
raise Exception("TTS is still initializing...")
if progress is not None:
progress(0, "Initializing TTS...")
load_tts()
if hasattr(tts, "loading") and tts.loading:
raise Exception("TTS is still initializing...")
do_gc()
voice_samples = None
conditioning_latents =None
sample_voice = None
voice_cache = {}
def fetch_voice( voice ):
cache_key = f'{voice}:{tts.autoregressive_model_hash[:8]}'
if cache_key in voice_cache:
return voice_cache[cache_key]
print(f"Loading voice: {voice} with model {tts.autoregressive_model_hash[:8]}")
sample_voice = None
if voice == "microphone":
if parameters['mic_audio'] is None:
raise Exception("Please provide audio from mic when choosing `microphone` as a voice input")
voice_samples, conditioning_latents = [load_audio(parameters['mic_audio'], tts.input_sample_rate)], None
elif voice == "random":
voice_samples, conditioning_latents = None, tts.get_random_conditioning_latents()
else:
if progress is not None:
progress(0, desc=f"Loading voice: {voice}")
voice_samples, conditioning_latents = load_voice(voice, model_hash=tts.autoregressive_model_hash)
if voice_samples and len(voice_samples) > 0:
if conditioning_latents is None:
conditioning_latents = compute_latents(voice=voice, voice_samples=voice_samples, voice_latents_chunks=parameters['voice_latents_chunks'])
sample_voice = torch.cat(voice_samples, dim=-1).squeeze().cpu()
voice_samples = None
voice_cache[cache_key] = (voice_samples, conditioning_latents, sample_voice)
return voice_cache[cache_key]
def get_settings( override=None ):
settings = {
'temperature': float(parameters['temperature']),
'top_p': float(parameters['top_p']),
'diffusion_temperature': float(parameters['diffusion_temperature']),
'length_penalty': float(parameters['length_penalty']),
'repetition_penalty': float(parameters['repetition_penalty']),
'cond_free_k': float(parameters['cond_free_k']),
'num_autoregressive_samples': parameters['num_autoregressive_samples'],
'sample_batch_size': args.sample_batch_size,
'diffusion_iterations': parameters['diffusion_iterations'],
'voice_samples': None,
'conditioning_latents': None,
'use_deterministic_seed': parameters['seed'],
'return_deterministic_state': True,
'k': parameters['candidates'],
'diffusion_sampler': parameters['diffusion_sampler'],
'breathing_room': parameters['breathing_room'],
'progress': parameters['progress'],
'half_p': "Half Precision" in parameters['experimentals'],
'cond_free': "Conditioning-Free" in parameters['experimentals'],
'cvvp_amount': parameters['cvvp_weight'],
'autoregressive_model': args.autoregressive_model,
}
# could be better to just do a ternary on everything above, but i am not a professional
selected_voice = voice
if override is not None:
if 'voice' in override:
selected_voice = override['voice']
for k in override:
if k not in settings:
continue
settings[k] = override[k]
if settings['autoregressive_model'] is not None:
if settings['autoregressive_model'] == "auto":
settings['autoregressive_model'] = deduce_autoregressive_model(selected_voice)
tts.load_autoregressive_model(settings['autoregressive_model'])
settings['voice_samples'], settings['conditioning_latents'], _ = fetch_voice(voice=selected_voice)
# clamp it down for the insane users who want this
# it would be wiser to enforce the sample size to the batch size, but this is what the user wants
settings['sample_batch_size'] = args.sample_batch_size
if not settings['sample_batch_size']:
settings['sample_batch_size'] = tts.autoregressive_batch_size
if settings['num_autoregressive_samples'] < settings['sample_batch_size']:
settings['sample_batch_size'] = settings['num_autoregressive_samples']
if settings['conditioning_latents'] is not None and len(settings['conditioning_latents']) == 2 and settings['cvvp_amount'] > 0:
print("Requesting weighing against CVVP weight, but voice latents are missing some extra data. Please regenerate your voice latents with 'Slimmer voice latents' unchecked.")
settings['cvvp_amount'] = 0
return settings
if not parameters['delimiter']:
parameters['delimiter'] = "\n"
elif parameters['delimiter'] == "\\n":
parameters['delimiter'] = "\n"
if parameters['delimiter'] and parameters['delimiter'] != "" and parameters['delimiter'] in parameters['text']:
texts = parameters['text'].split(parameters['delimiter'])
else:
texts = split_and_recombine_text(parameters['text'])
full_start_time = time.time()
outdir = f"./results/{voice}/"
os.makedirs(outdir, exist_ok=True)
audio_cache = {}
volume_adjust = torchaudio.transforms.Vol(gain=args.output_volume, gain_type="amplitude") if args.output_volume != 1 else None
idx = 0
idx_cache = {}
for i, file in enumerate(os.listdir(outdir)):
filename = os.path.basename(file)
extension = os.path.splitext(filename)[1]
if extension != ".json" and extension != ".wav":
continue
match = re.findall(rf"^{voice}_(\d+)(?:.+?)?{extension}$", filename)
if match and len(match) > 0:
key = int(match[0])
idx_cache[key] = True
if len(idx_cache) > 0:
keys = sorted(list(idx_cache.keys()))
idx = keys[-1] + 1
idx = pad(idx, 4)
def get_name(line=0, candidate=0, combined=False):
name = f"{idx}"
if combined:
name = f"{name}_combined"
elif len(texts) > 1:
name = f"{name}_{line}"
if parameters['candidates'] > 1:
name = f"{name}_{candidate}"
return name
def get_info( voice, settings = None, latents = True ):
info = {}
info.update(parameters)
info['time'] = time.time()-full_start_time
info['datetime'] = datetime.now().isoformat()
info['model'] = tts.autoregressive_model_path
info['model_hash'] = tts.autoregressive_model_hash
info['progress'] = None
del info['progress']
if info['delimiter'] == "\n":
info['delimiter'] = "\\n"
if settings is not None:
for k in settings:
if k in info:
info[k] = settings[k]
if 'half_p' in settings and 'cond_free' in settings:
info['experimentals'] = []
if settings['half_p']:
info['experimentals'].append("Half Precision")
if settings['cond_free']:
info['experimentals'].append("Conditioning-Free")
if latents and "latents" not in info:
voice = info['voice']
model_hash = settings["model_hash"][:8] if settings is not None and "model_hash" in settings else tts.autoregressive_model_hash[:8]
dir = f'{get_voice_dir()}/{voice}/'
latents_path = f'{dir}/cond_latents_{model_hash}.pth'
if voice == "random" or voice == "microphone":
if latents and settings is not None and settings['conditioning_latents']:
os.makedirs(dir, exist_ok=True)
torch.save(conditioning_latents, latents_path)
if latents_path and os.path.exists(latents_path):
try:
with open(latents_path, 'rb') as f:
info['latents'] = base64.b64encode(f.read()).decode("ascii")
except Exception as e:
pass
return info
for line, cut_text in enumerate(texts):
if parameters['emotion'] == "Custom":
if parameters['prompt'] and parameters['prompt'].strip() != "":
cut_text = f"[{parameters['prompt']},] {cut_text}"
elif parameters['emotion'] != "None" and parameters['emotion']:
cut_text = f"[I am really {parameters['emotion'].lower()},] {cut_text}"
progress.msg_prefix = f'[{str(line+1)}/{str(len(texts))}]'
print(f"{progress.msg_prefix} Generating line: {cut_text}")
start_time = time.time()
# do setting editing
match = re.findall(r'^(\{.+\}) (.+?)$', cut_text)
override = None
if match and len(match) > 0:
match = match[0]
try:
override = json.loads(match[0])
cut_text = match[1].strip()
except Exception as e:
raise Exception("Prompt settings editing requested, but received invalid JSON")
settings = get_settings( override=override )
gen, additionals = tts.tts(cut_text, **settings )
parameters['seed'] = additionals[0]
run_time = time.time()-start_time
print(f"Generating line took {run_time} seconds")
if not isinstance(gen, list):
gen = [gen]
for j, g in enumerate(gen):
audio = g.squeeze(0).cpu()
name = get_name(line=line, candidate=j)
settings['text'] = cut_text
settings['time'] = run_time
settings['datetime'] = datetime.now().isoformat(),
settings['model'] = tts.autoregressive_model_path
settings['model_hash'] = tts.autoregressive_model_hash
audio_cache[name] = {
'audio': audio,
'settings': get_info(voice=override['voice'] if override and 'voice' in override else voice, settings=settings)
}
# save here in case some error happens mid-batch
torchaudio.save(f'{outdir}/{voice}_{name}.wav', audio, tts.output_sample_rate)
del gen
do_gc()
for k in audio_cache:
audio = audio_cache[k]['audio']
audio, _ = resample(audio, tts.output_sample_rate, args.output_sample_rate)
if volume_adjust is not None:
audio = volume_adjust(audio)
audio_cache[k]['audio'] = audio
torchaudio.save(f'{outdir}/{voice}_{k}.wav', audio, args.output_sample_rate)
output_voices = []
for candidate in range(parameters['candidates']):
if len(texts) > 1:
audio_clips = []
for line in range(len(texts)):
name = get_name(line=line, candidate=candidate)
audio = audio_cache[name]['audio']
audio_clips.append(audio)
name = get_name(candidate=candidate, combined=True)
audio = torch.cat(audio_clips, dim=-1)
torchaudio.save(f'{outdir}/{voice}_{name}.wav', audio, args.output_sample_rate)
audio = audio.squeeze(0).cpu()
audio_cache[name] = {
'audio': audio,
'settings': get_info(voice=voice),
'output': True
}
else:
name = get_name(candidate=candidate)
audio_cache[name]['output'] = True
if args.voice_fixer:
if not voicefixer:
progress(0, "Loading voicefix...")
load_voicefixer()
try:
fixed_cache = {}
for name in progress.tqdm(audio_cache, desc="Running voicefix..."):
del audio_cache[name]['audio']
if 'output' not in audio_cache[name] or not audio_cache[name]['output']:
continue
path = f'{outdir}/{voice}_{name}.wav'
fixed = f'{outdir}/{voice}_{name}_fixed.wav'
voicefixer.restore(
input=path,
output=fixed,
cuda=get_device_name() == "cuda" and args.voice_fixer_use_cuda,
#mode=mode,
)
fixed_cache[f'{name}_fixed'] = {
'settings': audio_cache[name]['settings'],
'output': True
}
audio_cache[name]['output'] = False
for name in fixed_cache:
audio_cache[name] = fixed_cache[name]
except Exception as e:
print(e)
print("\nFailed to run Voicefixer")
for name in audio_cache:
if 'output' not in audio_cache[name] or not audio_cache[name]['output']:
if args.prune_nonfinal_outputs:
audio_cache[name]['pruned'] = True
os.remove(f'{outdir}/{voice}_{name}.wav')
continue
output_voices.append(f'{outdir}/{voice}_{name}.wav')
if not args.embed_output_metadata:
with open(f'{outdir}/{voice}_{name}.json', 'w', encoding="utf-8") as f:
f.write(json.dumps(audio_cache[name]['settings'], indent='\t') )
if args.embed_output_metadata:
for name in progress.tqdm(audio_cache, desc="Embedding metadata..."):
if 'pruned' in audio_cache[name] and audio_cache[name]['pruned']:
continue
metadata = music_tag.load_file(f"{outdir}/{voice}_{name}.wav")
metadata['lyrics'] = json.dumps(audio_cache[name]['settings'])
metadata.save()
if sample_voice is not None:
sample_voice = (tts.input_sample_rate, sample_voice.numpy())
info = get_info(voice=voice, latents=False)
print(f"Generation took {info['time']} seconds, saved to '{output_voices[0]}'\n")
info['seed'] = usedSeed
if 'latents' in info:
del info['latents']
os.makedirs('./config/', exist_ok=True)
with open(f'./config/generate.json', 'w', encoding="utf-8") as f:
f.write(json.dumps(info, indent='\t') )
stats = [
[ parameters['seed'], "{:.3f}".format(info['time']) ]
]
return (
sample_voice,
output_voices,
stats,
)
def cancel_generate():
import tortoise.api
tortoise.api.STOP_SIGNAL = True
def hash_file(path, algo="md5", buffer_size=0):
hash = None
if algo == "md5":
hash = hashlib.md5()
elif algo == "sha1":
hash = hashlib.sha1()
else:
raise Exception(f'Unknown hash algorithm specified: {algo}')
if not os.path.exists(path):
raise Exception(f'Path not found: {path}')
with open(path, 'rb') as f:
if buffer_size > 0:
while True:
data = f.read(buffer_size)
if not data:
break
hash.update(data)
else:
hash.update(f.read())
return "{0}".format(hash.hexdigest())
def update_baseline_for_latents_chunks( voice ):
global current_voice
current_voice = voice
path = f'{get_voice_dir()}/{voice}/'
if not os.path.isdir(path):
return 1
dataset_file = f'./training/{voice}/train.txt'
if os.path.exists(dataset_file):
return 0 # 0 will leverage using the LJspeech dataset for computing latents
files = os.listdir(path)
total = 0
total_duration = 0
for file in files:
if file[-4:] != ".wav":
continue
metadata = torchaudio.info(f'{path}/{file}')
duration = metadata.num_frames / metadata.sample_rate
total_duration += duration
total = total + 1
# brain too fried to figure out a better way
if args.autocalculate_voice_chunk_duration_size == 0:
return int(total_duration / total) if total > 0 else 1
return int(total_duration / args.autocalculate_voice_chunk_duration_size) if total_duration > 0 else 1
def compute_latents(voice=None, voice_samples=None, voice_latents_chunks=0, progress=None):
global tts
global args
unload_whisper()
unload_voicefixer()
if not tts:
if tts_loading:
raise Exception("TTS is still initializing...")
load_tts()
if hasattr(tts, "loading") and tts.loading:
raise Exception("TTS is still initializing...")
if args.autoregressive_model == "auto":
tts.load_autoregressive_model(deduce_autoregressive_model(voice))
if voice:
load_from_dataset = voice_latents_chunks == 0
if load_from_dataset:
dataset_path = f'./training/{voice}/train.txt'
if not os.path.exists(dataset_path):
load_from_dataset = False
else:
with open(dataset_path, 'r', encoding="utf-8") as f:
lines = f.readlines()
print("Leveraging dataset for computing latents")
voice_samples = []
max_length = 0
for line in lines:
filename = f'./training/{voice}/{line.split("|")[0]}'
waveform = load_audio(filename, 22050)
max_length = max(max_length, waveform.shape[-1])
voice_samples.append(waveform)
for i in range(len(voice_samples)):
voice_samples[i] = pad_or_truncate(voice_samples[i], max_length)
voice_latents_chunks = len(voice_samples)
if voice_latents_chunks == 0:
print("Dataset is empty!")
load_from_dataset = True
if not load_from_dataset:
voice_samples, _ = load_voice(voice, load_latents=False)
if voice_samples is None:
return
conditioning_latents = tts.get_conditioning_latents(voice_samples, return_mels=not args.latents_lean_and_mean, slices=voice_latents_chunks, force_cpu=args.force_cpu_for_conditioning_latents, progress=progress)
if len(conditioning_latents) == 4:
conditioning_latents = (conditioning_latents[0], conditioning_latents[1], conditioning_latents[2], None)
outfile = f'{get_voice_dir()}/{voice}/cond_latents_{tts.autoregressive_model_hash[:8]}.pth'
torch.save(conditioning_latents, outfile)
print(f'Saved voice latents: {outfile}')
return conditioning_latents
# superfluous, but it cleans up some things
class TrainingState():
def __init__(self, config_path, keep_x_past_checkpoints=0, start=True):
# parse config to get its iteration
with open(config_path, 'r') as file:
self.config = yaml.safe_load(file)
gpus = self.config["gpus"]
self.killed = False
self.dataset_dir = f"./training/{self.config['name']}/finetune/"
self.batch_size = self.config['datasets']['train']['batch_size']
self.dataset_path = self.config['datasets']['train']['path']
with open(self.dataset_path, 'r', encoding="utf-8") as f:
self.dataset_size = len(f.readlines())
self.it = 0
self.its = self.config['train']['niter']
self.step = 0
self.steps = 1
self.epoch = 0
self.epochs = int(self.its*self.batch_size/self.dataset_size)
self.checkpoint = 0
self.checkpoints = int(self.its / self.config['logger']['save_checkpoint_freq'])
self.buffer = []
self.open_state = False
self.training_started = False
self.info = {}
self.it_rate = ""
self.it_rates = 0
self.epoch_rate = ""
self.eta = "?"
self.eta_hhmmss = "?"
self.nan_detected = False
self.last_info_check_at = 0
self.statistics = {
'loss': [],
'lr': [],
}
self.losses = []
self.metrics = {
'step': "",
'rate': "",
'loss': "",
}
self.loss_milestones = [ 1.0, 0.15, 0.05 ]
if keep_x_past_checkpoints > 0:
self.cleanup_old(keep=keep_x_past_checkpoints)
if start:
self.spawn_process(config_path=config_path, gpus=gpus)
def spawn_process(self, config_path, gpus=1):
self.cmd = ['train.bat', config_path] if os.name == "nt" else ['./train.sh', config_path]
print("Spawning process: ", " ".join(self.cmd))
self.process = subprocess.Popen(self.cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True)
def parse_metrics(self, data):
if isinstance(data, str):
if line.find('INFO: Training Metrics:') >= 0:
data = json.loads(line.split("INFO: Training Metrics:")[-1])
data['mode'] = "training"
elif line.find('INFO: Validation Metrics:') >= 0:
data = json.loads(line.split("INFO: Validation Metrics:")[-1])
data['mode'] = "validation"
else:
return
self.info = data
if 'epoch' in self.info:
self.epoch = int(self.info['epoch'])
if 'it' in self.info:
self.it = int(self.info['it'])
if 'step' in self.info:
self.step = int(self.info['step'])
if 'steps' in self.info:
self.steps = int(self.info['steps'])
if 'iteration_rate' in self.info:
it_rate = self.info['iteration_rate'] * self.batch_size # why
self.it_rate = f'{"{:.3f}".format(1/it_rate)}it/s' if 0 < it_rate and it_rate < 1 else f'{"{:.3f}".format(it_rate)}s/it'
self.it_rates += it_rate
epoch_rate = self.it_rates / self.it * self.steps
if epoch_rate > 0:
self.epoch_rate = f'{"{:.3f}".format(1/epoch_rate)}epoch/s' if 0 < epoch_rate and epoch_rate < 1 else f'{"{:.3f}".format(epoch_rate)}s/epoch'
try:
self.eta = (self.its - self.it) * (self.it_rates / self.it)
eta = str(timedelta(seconds=int(self.eta)))
self.eta_hhmmss = eta
except Exception as e:
self.eta_hhmmss = "?"
pass
self.metrics['step'] = [f"{self.epoch}/{self.epochs}"]
if self.epochs != self.its:
self.metrics['step'].append(f"{self.it}/{self.its}")
if self.steps > 1:
self.metrics['step'].append(f"{self.step}/{self.steps}")
self.metrics['step'] = ", ".join(self.metrics['step'])
epoch = self.epoch + (self.step / self.steps)
if 'lr' in self.info:
self.statistics['lr'].append({'epoch': epoch, 'it': self.it, 'value': self.info['lr'], 'type': 'learning_rate'})
for k in ['loss_text_ce', 'loss_mel_ce', 'loss_gpt_total']:
if k not in self.info:
continue
if k == "loss_gpt_total":
self.losses.append( self.statistics['loss'][-1] )
else:
self.statistics['loss'].append({'epoch': epoch, 'it': self.it, 'value': self.info[k], 'type': f'{"val_" if data["mode"] == "validation" else ""}{k}' })
return data
def get_status(self):
message = None
self.metrics['rate'] = []
if self.epoch_rate:
self.metrics['rate'].append(self.epoch_rate)
if self.it_rate and self.epoch_rate[:-7] != self.it_rate[:-4]:
self.metrics['rate'].append(self.it_rate)
self.metrics['rate'] = ", ".join(self.metrics['rate'])
eta_hhmmss = self.eta_hhmmss if self.eta_hhmmss else "?"
self.metrics['loss'] = []
if 'lr' in self.info:
self.metrics['loss'].append(f'LR: {"{:.3e}".format(self.info["lr"])}')
if len(self.losses) > 0:
self.metrics['loss'].append(f'Loss: {"{:.3f}".format(self.losses[-1]["value"])}')
if False and len(self.losses) >= 2:
deriv = 0
accum_length = len(self.losses)//2 # i *guess* this is fine when you think about it
loss_value = self.losses[-1]["value"]
for i in range(accum_length):
d1_loss = self.losses[accum_length-i-1]["value"]
d2_loss = self.losses[accum_length-i-2]["value"]
dloss = (d2_loss - d1_loss)
d1_step = self.losses[accum_length-i-1]["it"]
d2_step = self.losses[accum_length-i-2]["it"]
dstep = (d2_step - d1_step)
if dstep == 0:
continue
inst_deriv = dloss / dstep
deriv += inst_deriv
deriv = deriv / accum_length
print("Deriv: ", deriv)
if deriv != 0: # dloss < 0:
next_milestone = None
for milestone in self.loss_milestones:
if loss_value > milestone:
next_milestone = milestone
break
print(f"Loss value: {loss_value} | Next milestone: {next_milestone} | Distance: {loss_value - next_milestone}")
if next_milestone:
# tfw can do simple calculus but not basic algebra in my head
est_its = (next_milestone - loss_value) / deriv * 100
print(f"Estimated: {est_its}")
if est_its >= 0:
self.metrics['loss'].append(f'Est. milestone {next_milestone} in: {int(est_its)}its')
else:
est_loss = inst_deriv * (self.its - self.it) + loss_value
if est_loss >= 0:
self.metrics['loss'].append(f'Est. final loss: {"{:.3f}".format(est_loss)}')
self.metrics['loss'] = ", ".join(self.metrics['loss'])
message = f"[{self.metrics['step']}] [{self.metrics['rate']}] [ETA: {eta_hhmmss}] [{self.metrics['loss']}]"
if self.nan_detected:
message = f"[!NaN DETECTED! {self.nan_detected}] {message}"
return message
def load_statistics(self, update=False):
if not os.path.isdir(f'{self.dataset_dir}/'):
return
infos = {}
highest_step = self.last_info_check_at
if not update:
self.statistics['loss'] = []
self.statistics['lr'] = []
self.it_rates = 0
logs = sorted([f'{self.dataset_dir}/{d}' for d in os.listdir(self.dataset_dir) if d[-4:] == ".log" ])
if update:
logs = [logs[-1]]
for log in logs:
with open(log, 'r', encoding="utf-8") as f:
lines = f.readlines()
for line in lines:
if line.find('INFO: Training Metrics:') >= 0:
data = json.loads(line.split("INFO: Training Metrics:")[-1])
data['mode'] = "training"
elif line.find('INFO: Validation Metrics:') >= 0:
data = json.loads(line.split("INFO: Validation Metrics:")[-1])
data['mode'] = "validation"
else:
continue
if "it" not in data:
continue
it = data['it']
if update and it <= self.last_info_check_at:
continue
self.parse_metrics(data)
self.last_info_check_at = highest_step
def cleanup_old(self, keep=2):
if keep <= 0:
return
if not os.path.isdir(self.dataset_dir):
return
models = sorted([ int(d[:-8]) for d in os.listdir(f'{self.dataset_dir}/models/') if d[-8:] == "_gpt.pth" ])
states = sorted([ int(d[:-6]) for d in os.listdir(f'{self.dataset_dir}/training_state/') if d[-6:] == ".state" ])
remove_models = models[:-keep]
remove_states = states[:-keep]
for d in remove_models:
path = f'{self.dataset_dir}/models/{d}_gpt.pth'
print("Removing", path)
os.remove(path)
for d in remove_states:
path = f'{self.dataset_dir}/training_state/{d}.state'
print("Removing", path)
os.remove(path)
def parse(self, line, verbose=False, keep_x_past_checkpoints=0, buffer_size=8, progress=None ):
self.buffer.append(f'{line}')
should_return = False
percent = 0
message = None
if line.find('Finished training') >= 0:
self.killed = True
# rip out iteration info
elif not self.training_started:
if line.find('Start training from epoch') >= 0:
self.training_started = True # could just leverage the above variable, but this is python, and there's no point in these aggressive microoptimizations
match = re.findall(r'epoch: ([\d,]+)', line)
if match and len(match) > 0:
self.epoch = int(match[0].replace(",", ""))
match = re.findall(r'iter: ([\d,]+)', line)
if match and len(match) > 0:
self.it = int(match[0].replace(",", ""))
self.checkpoints = int((self.its - self.it) / self.config['logger']['save_checkpoint_freq'])
self.load_statistics()
should_return = True
else:
# INFO: Training Metrics: {"loss_text_ce": 4.308311939239502, "loss_mel_ce": 2.1610655784606934, "loss_gpt_total": 2.204148769378662, "lr": 0.0001, "it": 2, "step": 1, "steps": 1, "epoch": 1, "iteration_rate": 0.10700102965037028}
if line.find('INFO: Training Metrics:') >= 0:
data = json.loads(line.split("INFO: Training Metrics:")[-1])
data['mode'] = "training"
elif line.find('INFO: Validation Metrics:') >= 0:
data = json.loads(line.split("INFO: Validation Metrics:")[-1])
data['mode'] = "validation"
else:
data = None
if data is not None:
if ': nan' in line and not self.nan_detected:
self.nan_detected = self.it
self.parse_metrics( data )
message = self.get_status()
if message:
percent = self.it / float(self.its) # self.epoch / float(self.epochs)
if progress is not None:
progress(percent, message)
self.buffer.append(f'[{"{:.3f}".format(percent*100)}%] {message}')
should_return = True
if verbose and not self.training_started:
should_return = True
self.buffer = self.buffer[-buffer_size:]
result = None
if should_return:
result = "".join(self.buffer) if not self.training_started else message
return (
result,
percent,
message,
)
try:
import altair as alt
alt.data_transformers.enable('default', max_rows=None)
except Exception as e:
print(e)
pass
def run_training(config_path, verbose=False, keep_x_past_checkpoints=0, progress=gr.Progress(track_tqdm=True)):
global training_state
if training_state and training_state.process:
return "Training already in progress"
# ensure we have the dvae.pth
get_model_path('dvae.pth')
# I don't know if this is still necessary, as it was bitching at me for not doing this, despite it being in a separate process
torch.multiprocessing.freeze_support()
unload_tts()
unload_whisper()
unload_voicefixer()
training_state = TrainingState(config_path=config_path, keep_x_past_checkpoints=keep_x_past_checkpoints)
for line in iter(training_state.process.stdout.readline, ""):
if training_state.killed:
return
result, percent, message = training_state.parse( line=line, verbose=verbose, keep_x_past_checkpoints=keep_x_past_checkpoints, progress=progress )
print(f"[Training] [{datetime.now().isoformat()}] {line[:-1]}")
if result:
yield result
if progress is not None and message:
progress(percent, message)
if training_state:
training_state.process.stdout.close()
return_code = training_state.process.wait()
training_state = None
def update_training_dataplot(config_path=None):
global training_state
losses = None
lrs = None
if not training_state:
if config_path:
training_state = TrainingState(config_path=config_path, start=False)
training_state.load_statistics()
message = training_state.get_status()
if len(training_state.statistics['loss']) > 0:
losses = gr.LinePlot.update(value=pd.DataFrame(training_state.statistics['loss']), x_lim=[0,training_state.epochs], x="epoch", y="value", title="Loss Metrics", color="type", tooltip=['epoch', 'it', 'value', 'type'], width=500, height=350,)
if len(training_state.statistics['lr']) > 0:
lrs = gr.LinePlot.update(value=pd.DataFrame(training_state.statistics['lr']), x_lim=[0,training_state.epochs], x="epoch", y="value", title="Learning Rate", color="type", tooltip=['epoch', 'it', 'value', 'type'], width=500, height=350,)
del training_state
training_state = None
else:
# training_state.load_statistics()
if len(training_state.statistics['loss']) > 0:
losses = gr.LinePlot.update(value=pd.DataFrame(training_state.statistics['loss']), x_lim=[0,training_state.epochs], x="epoch", y="value", title="Loss Metrics", color="type", tooltip=['epoch', 'it', 'value', 'type'], width=500, height=350,)
if len(training_state.statistics['lr']) > 0:
lrs = gr.LinePlot.update(value=pd.DataFrame(training_state.statistics['lr']), x_lim=[0,training_state.epochs], x="epoch", y="value", title="Learning Rate", color="type", tooltip=['epoch', 'it', 'value', 'type'], width=500, height=350,)
return (losses, lrs)
def reconnect_training(verbose=False, progress=gr.Progress(track_tqdm=True)):
global training_state
if not training_state or not training_state.process:
return "Training not in progress"
for line in iter(training_state.process.stdout.readline, ""):
result, percent, message = training_state.parse( line=line, verbose=verbose, progress=progress )
print(f"[Training] [{datetime.now().isoformat()}] {line[:-1]}")
if result:
yield result
if progress is not None and message:
progress(percent, message)
def stop_training():
global training_state
if training_state is None:
return "No training in progress"
print("Killing training process...")
training_state.killed = True
children = []
# wrapped in a try/catch in case for some reason this fails outside of Linux
try:
children = [p.info for p in psutil.process_iter(attrs=['pid', 'name', 'cmdline']) if './src/train.py' in p.info['cmdline']]
except Exception as e:
pass
training_state.process.stdout.close()
training_state.process.terminate()
training_state.process.kill()
return_code = training_state.process.wait()
for p in children:
os.kill( p['pid'], signal.SIGKILL )
training_state = None
print("Killed training process.")
return f"Training cancelled: {return_code}"
def get_halfp_model_path():
autoregressive_model_path = get_model_path('autoregressive.pth')
return autoregressive_model_path.replace(".pth", "_half.pth")
def convert_to_halfp():
autoregressive_model_path = get_model_path('autoregressive.pth')
print(f'Converting model to half precision: {autoregressive_model_path}')
model = torch.load(autoregressive_model_path)
for k in model:
model[k] = model[k].half()
outfile = get_halfp_model_path()
torch.save(model, outfile)
print(f'Converted model to half precision: {outfile}')
def whisper_transcribe( file, language=None ):
# shouldn't happen, but it's for safety
if not whisper_model:
load_whisper_model(language=language)
if args.whisper_backend == "openai/whisper":
if not language:
language = None
return whisper_model.transcribe(file, language=language)
if args.whisper_backend == "lightmare/whispercpp":
res = whisper_model.transcribe(file)
segments = whisper_model.extract_text_and_timestamps( res )
result = {
'segments': []
}
for segment in segments:
reparsed = {
'start': segment[0] / 100.0,
'end': segment[1] / 100.0,
'text': segment[2],
}
result['segments'].append(reparsed)
return result
def validate_waveform( waveform, sample_rate, min_only=False ):
if not torch.any(waveform < 0):
return "Waveform is empty"
num_channels, num_frames = waveform.shape
duration = num_frames / sample_rate
if duration < MIN_TRAINING_DURATION:
return "Duration too short ({:.3f}s < {:.3f}s)".format(duration, MIN_TRAINING_DURATION)
if not min_only:
if duration > MAX_TRAINING_DURATION:
return "Duration too long ({:.3f}s < {:.3f}s)".format(MAX_TRAINING_DURATION, duration)
return
def transcribe_dataset( voice, language=None, skip_existings=False, progress=None ):
unload_tts()
global whisper_model
if whisper_model is None:
load_whisper_model(language=language)
results = {}
files = sorted( get_voices(load_latents=False)[voice] )
indir = f'./training/{voice}/'
infile = f'{indir}/whisper.json'
os.makedirs(f'{indir}/audio/', exist_ok=True)
if os.path.exists(infile):
results = json.load(open(infile, 'r', encoding="utf-8"))
for file in enumerate_progress(files, desc="Iterating through voice files", progress=progress):
basename = os.path.basename(file)
if basename in results and skip_existings:
print(f"Skipping already parsed file: {basename}")
else:
results[basename] = whisper_transcribe(file, language=language)
waveform, sample_rate = torchaudio.load(file)
# resample to the input rate, since it'll get resampled for training anyways
# this should also "help" increase throughput a bit when filling the dataloaders
waveform, sample_rate = resample(waveform, sample_rate, tts.input_sample_rate if tts is not None else 22050)
torchaudio.save(f"{indir}/audio/{basename}", waveform, sample_rate)
with open(infile, 'w', encoding="utf-8") as f:
f.write(json.dumps(results, indent='\t'))
do_gc()
return f"Processed dataset to: {indir}"
def slice_waveform( waveform, sample_rate, start, end, trim ):
start = int(start * sample_rate)
end = int(end * sample_rate)
if start < 0:
start = 0
if end >= waveform.shape[-1]:
end = waveform.shape[-1] - 1
sliced = waveform[:, start:end]
error = validate_waveform( sliced, sample_rate, min_only=True )
if trim and not error:
sliced = torchaudio.functional.vad( sliced, sample_rate )
return sliced, error
def slice_dataset( voice, trim_silence=True, start_offset=0, end_offset=0, results=None ):
indir = f'./training/{voice}/'
infile = f'{indir}/whisper.json'
messages = []
if not os.path.exists(infile):
raise Exception(f"Missing dataset: {infile}")
if results is None:
results = json.load(open(infile, 'r', encoding="utf-8"))
files = 0
segments = 0
for filename in results:
path = f'./voices/{voice}/{filename}'
if not os.path.exists(path):
path = f'./training/{voice}/{filename}'
if not os.path.exists(path):
message = f"Missing source audio: {filename}"
print(message)
messages.append(message)
continue
files += 1
result = results[filename]
waveform, sample_rate = torchaudio.load(path)
num_channels, num_frames = waveform.shape
duration = num_frames / sample_rate
for segment in result['segments']:
file = filename.replace(".wav", f"_{pad(segment['id'], 4)}.wav")
sliced, error = slice_waveform( waveform, sample_rate, segment['start'] + start_offset, segment['end'] + end_offset, trim_silence )
if error:
message = f"{error}, skipping... {file}"
print(message)
messages.append(message)
continue
sliced, _ = resample( sliced, sample_rate, 22050 )
torchaudio.save(f"{indir}/audio/{file}", sliced, 22050)
segments +=1
messages.append(f"Sliced segments: {files} => {segments}.")
return "\n".join(messages)
def prepare_dataset( voice, use_segments, text_length, audio_length, normalize=True ):
indir = f'./training/{voice}/'
infile = f'{indir}/whisper.json'
messages = []
if not os.path.exists(infile):
raise Exception(f"Missing dataset: {infile}")
results = json.load(open(infile, 'r', encoding="utf-8"))
lines = {
'training': [],
'validation': [],
}
normalizer = EnglishTextNormalizer() if normalize else None
errored = 0
for filename in results:
result = results[filename]
use_segment = use_segments
# check if unsegmented text exceeds 200 characters
if not use_segment:
if len(result['text']) > 200:
message = f"Text length too long (200 < {len(result['text'])}), using segments: {filename}"
print(message)
messages.append(message)
use_segment = True
# check if unsegmented audio exceeds 11.6s
if not use_segment:
path = f'{indir}/audio/{filename}'
if not os.path.exists(path):
messages.append(f"Missing source audio: {filename}")
errored += 1
continue
metadata = torchaudio.info(path)
duration = metadata.num_frames / metadata.sample_rate
if duration >= MAX_TRAINING_DURATION:
message = f"Audio too large, using segments: {filename}"
print(message)
messages.append(message)
use_segment = True
segments = result['segments'] if use_segment else [{'text': result['text']}]
for segment in segments:
file = filename.replace(".wav", f"_{pad(segment['id'], 4)}.wav") if use_segment else filename
path = f'{indir}/audio/{file}'
# segment when needed
if not os.path.exists(path):
tmp_results = {}
tmp_results[filename] = result
print(f"Audio not segmented, segmenting: {filename}")
message = slice_dataset( voice, results=tmp_results )
print(message)
messages = messages + message.split("\n")
if not os.path.exists(path):
message = f"Missing source audio: {file}"
print(message)
messages.append(message)
errored += 1
continue
text = segment['text'].strip()
normalized_text = normalizer(text) if normalize and result['language'] == "en" else text
if len(text) > 200:
message = f"Text length too long (200 < {len(text)}), skipping... {file}"
print(message)
messages.append(message)
errored += 1
continue
waveform, sample_rate = torchaudio.load(path)
num_channels, num_frames = waveform.shape
duration = num_frames / sample_rate
error = validate_waveform( waveform, sample_rate )
if error:
message = f"{error}, skipping... {file}"
print(message)
messages.append(message)
errored += 1
continue
culled = len(text) < text_length
if not culled and audio_length > 0:
culled = duration < audio_length
# for when i add in a little treat ;), as it requires normalized text
if normalize and len(normalized_text) < 200:
line = f'audio/{file}|{text}|{normalized_text}'
else:
line = f'audio/{file}|{text}'
lines['training' if not culled else 'validation'].append(line)
if culled or not VALLE_ENABLED:
continue
# VALL-E dataset
os.makedirs(f'{indir}/valle/', exist_ok=True)
try:
from vall_e.emb.qnt import encode as quantize
from vall_e.emb.g2p import encode as phonemize
if waveform.shape[0] == 2:
waveform = wav[:1]
quantized = quantize( waveform, sample_rate ).cpu()
torch.save(quantized, f'{indir}/valle/{file.replace(".wav",".qnt.pt")}')
phonemes = phonemize(normalized_text)
open(f'{indir}/valle/{file.replace(".wav",".phn.txt")}', 'w', encoding='utf-8').write(" ".join(phonemes))
except Exception as e:
print(e)
pass
training_joined = "\n".join(lines['training'])
validation_joined = "\n".join(lines['validation'])
with open(f'{indir}/train.txt', 'w', encoding="utf-8") as f:
f.write(training_joined)
with open(f'{indir}/validation.txt', 'w', encoding="utf-8") as f:
f.write(validation_joined)
messages.append(f"Prepared {len(lines['training'])} lines (validation: {len(lines['validation'])}, culled: {errored}).\n{training_joined}\n\n{validation_joined}")
return "\n".join(messages)
def calc_iterations( epochs, lines, batch_size ):
iterations = int(epochs * lines / float(batch_size))
return iterations
def schedule_learning_rate( iterations, schedule=LEARNING_RATE_SCHEDULE ):
return [int(iterations * d) for d in schedule]
def optimize_training_settings( **kwargs ):
messages = []
settings = {}
settings.update(kwargs)
dataset_path = f"./training/{settings['voice']}/train.txt"
with open(dataset_path, 'r', encoding="utf-8") as f:
lines = len(f.readlines())
if lines == 0:
raise Exception("Empty dataset.")
if settings['batch_size'] > lines:
settings['batch_size'] = lines
messages.append(f"Batch size is larger than your dataset, clamping batch size to: {settings['batch_size']}")
"""
if lines % settings['batch_size'] != 0:
settings['batch_size'] = int(lines / settings['batch_size'])
if settings['batch_size'] == 0:
settings['batch_size'] = 1
messages.append(f"Batch size not neatly divisible by dataset size, adjusting batch size to: {settings['batch_size']}")
"""
if settings['gradient_accumulation_size'] == 0:
settings['gradient_accumulation_size'] = 1
if settings['batch_size'] / settings['gradient_accumulation_size'] < 2:
settings['gradient_accumulation_size'] = int(settings['batch_size'] / 2)
if settings['gradient_accumulation_size'] == 0:
settings['gradient_accumulation_size'] = 1
messages.append(f"Gradient accumulation size is too large for a given batch size, clamping gradient accumulation size to: {settings['gradient_accumulation_size']}")
elif settings['batch_size'] % settings['gradient_accumulation_size'] != 0:
settings['gradient_accumulation_size'] -= settings['batch_size'] % settings['gradient_accumulation_size']
if settings['gradient_accumulation_size'] == 0:
settings['gradient_accumulation_size'] = 1
messages.append(f"Batch size is not evenly divisible by the gradient accumulation size, adjusting gradient accumulation size to: {settings['gradient_accumulation_size']}")
if settings['batch_size'] % settings['gpus'] != 0:
settings['batch_size'] -= settings['batch_size'] % settings['gpus']
if settings['batch_size'] == 0:
settings['batch_size'] = 1
messages.append(f"Batch size not neatly divisible by GPU count, adjusting batch size to: {settings['batch_size']}")
def get_device_batch_size( vram ):
DEVICE_BATCH_SIZE_MAP = [
(70, 128), # based on an A100-80G, I can safely get a ratio of 4096:32 = 128
(32, 64), # based on my two 6800XTs, I can only really safely get a ratio of 128:2 = 64
(16, 8), # based on an A4000, I can do a ratio of 512:64 = 8:1
(8, 4), # interpolated
(6, 2), # based on my 2060, it only really lets me have a batch ratio of 2:1
]
for k, v in DEVICE_BATCH_SIZE_MAP:
if vram > (k-1):
return v
return 1
if settings['gpus'] > get_device_count():
settings['gpus'] = get_device_count()
messages.append(f"GPU count exceeds defacto GPU count, clamping to: {settings['gpus']}")
if settings['gpus'] <= 1:
settings['gpus'] = 1
else:
messages.append(f"! EXPERIMENTAL ! Multi-GPU training is extremely particular, expect issues.")
# assuming you have equal GPUs
vram = get_device_vram() * settings['gpus']
batch_ratio = int(settings['batch_size'] / settings['gradient_accumulation_size'])
batch_cap = get_device_batch_size(vram)
if batch_ratio > batch_cap:
settings['gradient_accumulation_size'] = int(settings['batch_size'] / batch_cap)
messages.append(f"Batch ratio ({batch_ratio}) is expected to exceed your VRAM capacity ({'{:.3f}'.format(vram)}GB, suggested {batch_cap} batch size cap), adjusting gradient accumulation size to: {settings['gradient_accumulation_size']}")
iterations = calc_iterations(epochs=settings['epochs'], lines=lines, batch_size=settings['batch_size'])
if settings['epochs'] < settings['save_rate']:
settings['save_rate'] = settings['epochs']
messages.append(f"Save rate is too small for the given iteration step, clamping save rate to: {settings['save_rate']}")
if settings['epochs'] < settings['validation_rate']:
settings['validation_rate'] = settings['epochs']
messages.append(f"Validation rate is too small for the given iteration step, clamping validation rate to: {settings['validation_rate']}")
if settings['resume_state'] and not os.path.exists(settings['resume_state']):
settings['resume_state'] = None
messages.append("Resume path specified, but does not exist. Disabling...")
if settings['bitsandbytes']:
messages.append("! EXPERIMENTAL ! BitsAndBytes requested.")
if settings['half_p']:
if settings['bitsandbytes']:
settings['half_p'] = False
messages.append("Half Precision requested, but BitsAndBytes is also requested. Due to redundancies, disabling half precision...")
else:
messages.append("! EXPERIMENTAL ! Half Precision requested.")
if not os.path.exists(get_halfp_model_path()):
convert_to_halfp()
messages.append(f"For {settings['epochs']} epochs with {lines} lines in batches of {settings['batch_size']}, iterating for {iterations} steps ({int(iterations / settings['epochs'])} steps per epoch)")
return settings, messages
def save_training_settings( **kwargs ):
messages = []
settings = {}
settings.update(kwargs)
outjson = f'./training/{settings["voice"]}/train.json'
with open(outjson, 'w', encoding="utf-8") as f:
f.write(json.dumps(settings, indent='\t') )
settings['dataset_path'] = f"./training/{settings['voice']}/train.txt"
settings['validation_path'] = f"./training/{settings['voice']}/validation.txt"
with open(settings['dataset_path'], 'r', encoding="utf-8") as f:
lines = len(f.readlines())
if not settings['source_model'] or settings['source_model'] == "auto":
settings['source_model'] = f"./models/tortoise/autoregressive{'_half' if settings['half_p'] else ''}.pth"
if settings['half_p']:
if not os.path.exists(get_halfp_model_path()):
convert_to_halfp()
settings['iterations'] = calc_iterations(epochs=settings['epochs'], lines=lines, batch_size=settings['batch_size'])
messages.append(f"For {settings['epochs']} epochs with {lines} lines, iterating for {settings['iterations']} steps")
iterations_per_epoch = settings['iterations'] / settings['epochs']
settings['save_rate'] = int(settings['save_rate'] * iterations_per_epoch)
settings['validation_rate'] = int(settings['validation_rate'] * iterations_per_epoch)
iterations_per_epoch = int(iterations_per_epoch)
if settings['save_rate'] < 1:
settings['save_rate'] = 1
if settings['validation_rate'] < 1:
settings['validation_rate'] = 1
settings['validation_batch_size'] = int(settings['batch_size'] / settings['gradient_accumulation_size'])
settings['iterations'] = calc_iterations(epochs=settings['epochs'], lines=lines, batch_size=settings['batch_size'])
if settings['iterations'] % settings['save_rate'] != 0:
adjustment = int(settings['iterations'] / settings['save_rate']) * settings['save_rate']
messages.append(f"Iteration rate is not evenly divisible by save rate, adjusting: {settings['iterations']} => {adjustment}")
settings['iterations'] = adjustment
if not os.path.exists(settings['validation_path']):
settings['validation_enabled'] = False
messages.append("Validation not found, disabling validation...")
elif settings['validation_batch_size'] == 0:
settings['validation_enabled'] = False
messages.append("Validation batch size == 0, disabling validation...")
else:
settings['validation_enabled'] = True
with open(settings['validation_path'], 'r', encoding="utf-8") as f:
validation_lines = len(f.readlines())
if validation_lines < settings['validation_batch_size']:
settings['validation_batch_size'] = validation_lines
messages.append(f"Batch size exceeds validation dataset size, clamping validation batch size to {validation_lines}")
if settings['gpus'] > get_device_count():
settings['gpus'] = get_device_count()
# what an utter mistake this was
settings['optimizer'] = 'adamw' # if settings['gpus'] == 1 else 'adamw_zero'
if 'learning_rate_scheme' not in settings or settings['learning_rate_scheme'] not in LEARNING_RATE_SCHEMES:
settings['learning_rate_scheme'] = "Multistep"
settings['learning_rate_scheme'] = LEARNING_RATE_SCHEMES[settings['learning_rate_scheme']]
learning_rate_schema = [f"default_lr_scheme: {settings['learning_rate_scheme']}"]
if settings['learning_rate_scheme'] == "MultiStepLR":
if not settings['learning_rate_schedule']:
settings['learning_rate_schedule'] = LEARNING_RATE_SCHEDULE
elif isinstance(settings['learning_rate_schedule'],str):
settings['learning_rate_schedule'] = json.loads(settings['learning_rate_schedule'])
settings['learning_rate_schedule'] = schedule_learning_rate( iterations_per_epoch, settings['learning_rate_schedule'] )
learning_rate_schema.append(f" gen_lr_steps: {settings['learning_rate_schedule']}")
learning_rate_schema.append(f" lr_gamma: 0.5")
elif settings['learning_rate_scheme'] == "CosineAnnealingLR_Restart":
epochs = settings['epochs']
restarts = settings['learning_rate_restarts']
restart_period = int(epochs / restarts)
if 'learning_rate_warmup' not in settings:
settings['learning_rate_warmup'] = 0
if 'learning_rate_min' not in settings:
settings['learning_rate_min'] = 1e-08
if 'learning_rate_period' not in settings:
settings['learning_rate_period'] = [ iterations_per_epoch * restart_period for x in range(epochs) ]
settings['learning_rate_restarts'] = [ iterations_per_epoch * (x+1) * restart_period for x in range(restarts) ] # [52, 104, 156, 208]
if 'learning_rate_restart_weights' not in settings:
settings['learning_rate_restart_weights'] = [ ( restarts - x - 1 ) / restarts for x in range(restarts) ] # [.75, .5, .25, .125]
settings['learning_rate_restart_weights'][-1] = settings['learning_rate_restart_weights'][-2] * 0.5
learning_rate_schema.append(f" T_period: {settings['learning_rate_period']}")
learning_rate_schema.append(f" warmup: {settings['learning_rate_warmup']}")
learning_rate_schema.append(f" eta_min: !!float {settings['learning_rate_min']}")
learning_rate_schema.append(f" restarts: {settings['learning_rate_restarts']}")
learning_rate_schema.append(f" restart_weights: {settings['learning_rate_restart_weights']}")
settings['learning_rate_scheme'] = "\n".join(learning_rate_schema)
if settings['resume_state']:
settings['source_model'] = f"# pretrain_model_gpt: '{settings['source_model']}'"
settings['resume_state'] = f"resume_state: '{settings['resume_state']}'"
else:
settings['source_model'] = f"pretrain_model_gpt: '{settings['source_model']}'"
settings['resume_state'] = f"# resume_state: '{settings['resume_state']}'"
def use_template(template, out):
with open(template, 'r', encoding="utf-8") as f:
yaml = f.read()
# i could just load and edit the YAML directly, but this is easier, as I don't need to bother with path traversals
for k in settings:
if settings[k] is None:
continue
yaml = yaml.replace(f"${{{k}}}", str(settings[k]))
with open(out, 'w', encoding="utf-8") as f:
f.write(yaml)
use_template(f'./models/.template.dlas.yaml', f'./training/{settings["voice"]}/train.yaml')
settings['model_name'] = "ar"
use_template(f'./models/.template.valle.yaml', f'./training/{settings["voice"]}/ar.yaml')
settings['model_name'] = "nar"
use_template(f'./models/.template.valle.yaml', f'./training/{settings["voice"]}/nar.yaml')
messages.append(f"Saved training output")
return settings, messages
def import_voices(files, saveAs=None, progress=None):
global args
if not isinstance(files, list):
files = [files]
for file in enumerate_progress(files, desc="Importing voice files", progress=progress):
j, latents = read_generate_settings(file, read_latents=True)
if j is not None and saveAs is None:
saveAs = j['voice']
if saveAs is None or saveAs == "":
raise Exception("Specify a voice name")
outdir = f'{get_voice_dir()}/{saveAs}/'
os.makedirs(outdir, exist_ok=True)
if latents:
print(f"Importing latents to {latents}")
with open(f'{outdir}/cond_latents.pth', 'wb') as f:
f.write(latents)
latents = f'{outdir}/cond_latents.pth'
print(f"Imported latents to {latents}")
else:
filename = file.name
if filename[-4:] != ".wav":
raise Exception("Please convert to a WAV first")
path = f"{outdir}/{os.path.basename(filename)}"
print(f"Importing voice to {path}")
waveform, sample_rate = torchaudio.load(filename)
if args.voice_fixer:
if not voicefixer:
load_voicefixer()
waveform, sample_rate = resample(waveform, sample_rate, 44100)
torchaudio.save(path, waveform, sample_rate)
print(f"Running 'voicefixer' on voice sample: {path}")
voicefixer.restore(
input = path,
output = path,
cuda=get_device_name() == "cuda" and args.voice_fixer_use_cuda,
#mode=mode,
)
else:
torchaudio.save(path, waveform, sample_rate)
print(f"Imported voice to {path}")
def get_voice_list(dir=get_voice_dir(), append_defaults=False):
defaults = [ "random", "microphone" ]
os.makedirs(dir, exist_ok=True)
res = sorted([d for d in os.listdir(dir) if d not in defaults and os.path.isdir(os.path.join(dir, d)) and len(os.listdir(os.path.join(dir, d))) > 0 ])
if append_defaults:
res = res + defaults
return res
def get_autoregressive_models(dir="./models/finetunes/", prefixed=False):
os.makedirs(dir, exist_ok=True)
base = [get_model_path('autoregressive.pth')]
halfp = get_halfp_model_path()
if os.path.exists(halfp):
base.append(halfp)
additionals = sorted([f'{dir}/{d}' for d in os.listdir(dir) if d[-4:] == ".pth" ])
found = []
for training in os.listdir(f'./training/'):
if not os.path.isdir(f'./training/{training}/') or not os.path.isdir(f'./training/{training}/finetune/') or not os.path.isdir(f'./training/{training}/finetune/models/'):
continue
models = sorted([ int(d[:-8]) for d in os.listdir(f'./training/{training}/finetune/models/') if d[-8:] == "_gpt.pth" ])
found = found + [ f'./training/{training}/finetune/models/{d}_gpt.pth' for d in models ]
if len(found) > 0 or len(additionals) > 0:
base = ["auto"] + base
res = base + additionals + found
if prefixed:
for i in range(len(res)):
path = res[i]
hash = hash_file(path)
shorthash = hash[:8]
res[i] = f'[{shorthash}] {path}'
return res
def get_dataset_list(dir="./training/"):
return sorted([d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d)) and "train.txt" in os.listdir(os.path.join(dir, d)) ])
def get_training_list(dir="./training/"):
return sorted([f'./training/{d}/train.yaml' for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d)) and "train.yaml" in os.listdir(os.path.join(dir, d)) ])
def pad(num, zeroes):
return str(num).zfill(zeroes+1)
def curl(url):
try:
req = urllib.request.Request(url, headers={'User-Agent': 'Python'})
conn = urllib.request.urlopen(req)
data = conn.read()
data = data.decode()
data = json.loads(data)
conn.close()
return data
except Exception as e:
print(e)
return None
def check_for_updates( dir = None ):
if dir is None:
check_for_updates("./.git/")
check_for_updates("./.git/modules/dlas/")
check_for_updates("./.git/modules/tortoise-tts/")
return
git_dir = dir
if not os.path.isfile(f'{git_dir}/FETCH_HEAD'):
print(f"Cannot check for updates for {dir}: not from a git repo")
return False
with open(f'{git_dir}/FETCH_HEAD', 'r', encoding="utf-8") as f:
head = f.read()
match = re.findall(r"^([a-f0-9]+).+?https:\/\/(.+?)\/(.+?)\/(.+?)\n", head)
if match is None or len(match) == 0:
print(f"Cannot check for updates for {dir}: cannot parse FETCH_HEAD")
return False
match = match[0]
local = match[0]
host = match[1]
owner = match[2]
repo = match[3]
res = curl(f"https://{host}/api/v1/repos/{owner}/{repo}/branches/") #this only works for gitea instances
if res is None or len(res) == 0:
print(f"Cannot check for updates for {dir}: cannot fetch from remote")
return False
remote = res[0]["commit"]["id"]
if remote != local:
print(f"New version found for {dir}: {local[:8]} => {remote[:8]}")
return True
return False
def enumerate_progress(iterable, desc=None, progress=None, verbose=None):
if verbose and desc is not None:
print(desc)
if progress is None:
return tqdm(iterable, disable=not verbose)
return progress.tqdm(iterable, desc=f'{progress.msg_prefix} {desc}' if hasattr(progress, 'msg_prefix') else desc, track_tqdm=True)
def notify_progress(message, progress=None, verbose=True):
if verbose:
print(message)
if progress is None:
return
progress(0, desc=message)
def get_args():
global args
return args
def setup_args():
global args
default_arguments = {
'share': False,
'listen': None,
'check-for-updates': False,
'models-from-local-only': False,
'low-vram': False,
'sample-batch-size': None,
'embed-output-metadata': True,
'latents-lean-and-mean': True,
'voice-fixer': False, # getting tired of long initialization times in a Colab for downloading a large dataset for it
'voice-fixer-use-cuda': True,
'force-cpu-for-conditioning-latents': False,
'defer-tts-load': False,
'device-override': None,
'prune-nonfinal-outputs': True,
'concurrency-count': 2,
'autocalculate-voice-chunk-duration-size': 10,
'output-sample-rate': 44100,
'output-volume': 1,
'tts-backend': TTSES[0],
'autoregressive-model': None,
'vocoder-model': VOCODERS[-1],
'whisper-backend': 'openai/whisper',
'whisper-model': "base",
'training-default-halfp': False,
'training-default-bnb': True,
}
if os.path.isfile('./config/exec.json'):
with open(f'./config/exec.json', 'r', encoding="utf-8") as f:
try:
overrides = json.load(f)
for k in overrides:
default_arguments[k] = overrides[k]
except Exception as e:
print(e)
pass
parser = argparse.ArgumentParser()
parser.add_argument("--share", action='store_true', default=default_arguments['share'], help="Lets Gradio return a public URL to use anywhere")
parser.add_argument("--listen", default=default_arguments['listen'], help="Path for Gradio to listen on")
parser.add_argument("--check-for-updates", action='store_true', default=default_arguments['check-for-updates'], help="Checks for update on startup")
parser.add_argument("--models-from-local-only", action='store_true', default=default_arguments['models-from-local-only'], help="Only loads models from disk, does not check for updates for models")
parser.add_argument("--low-vram", action='store_true', default=default_arguments['low-vram'], help="Disables some optimizations that increases VRAM usage")
parser.add_argument("--no-embed-output-metadata", action='store_false', default=not default_arguments['embed-output-metadata'], help="Disables embedding output metadata into resulting WAV files for easily fetching its settings used with the web UI (data is stored in the lyrics metadata tag)")
parser.add_argument("--latents-lean-and-mean", action='store_true', default=default_arguments['latents-lean-and-mean'], help="Exports the bare essentials for latents.")
parser.add_argument("--voice-fixer", action='store_true', default=default_arguments['voice-fixer'], help="Uses python module 'voicefixer' to improve audio quality, if available.")
parser.add_argument("--voice-fixer-use-cuda", action='store_true', default=default_arguments['voice-fixer-use-cuda'], help="Hints to voicefixer to use CUDA, if available.")
parser.add_argument("--force-cpu-for-conditioning-latents", default=default_arguments['force-cpu-for-conditioning-latents'], action='store_true', help="Forces computing conditional latents to be done on the CPU (if you constantyl OOM on low chunk counts)")
parser.add_argument("--defer-tts-load", default=default_arguments['defer-tts-load'], action='store_true', help="Defers loading TTS model")
parser.add_argument("--prune-nonfinal-outputs", default=default_arguments['prune-nonfinal-outputs'], action='store_true', help="Deletes non-final output files on completing a generation")
parser.add_argument("--vocoder-model", default=default_arguments['vocoder-model'], action='store_true', help="Specifies with vocoder to use")
parser.add_argument("--device-override", default=default_arguments['device-override'], help="A device string to override pass through Torch")
parser.add_argument("--sample-batch-size", default=default_arguments['sample-batch-size'], type=int, help="Sets how many batches to use during the autoregressive samples pass")
parser.add_argument("--concurrency-count", type=int, default=default_arguments['concurrency-count'], help="How many Gradio events to process at once")
parser.add_argument("--autocalculate-voice-chunk-duration-size", type=float, default=default_arguments['autocalculate-voice-chunk-duration-size'], help="Number of seconds to suggest voice chunk size for (for example, 100 seconds of audio at 10 seconds per chunk will suggest 10 chunks)")
parser.add_argument("--output-sample-rate", type=int, default=default_arguments['output-sample-rate'], help="Sample rate to resample the output to (from 24KHz)")
parser.add_argument("--output-volume", type=float, default=default_arguments['output-volume'], help="Adjusts volume of output")
parser.add_argument("--tts-backend", default=default_arguments['tts-backend'], help="Specifies which TTS backend to use.")
parser.add_argument("--autoregressive-model", default=default_arguments['autoregressive-model'], help="Specifies which autoregressive model to use for sampling.")
parser.add_argument("--whisper-backend", default=default_arguments['whisper-backend'], action='store_true', help="Picks which whisper backend to use (openai/whisper, lightmare/whispercpp)")
parser.add_argument("--whisper-model", default=default_arguments['whisper-model'], help="Specifies which whisper model to use for transcription.")
parser.add_argument("--training-default-halfp", action='store_true', default=default_arguments['training-default-halfp'], help="Training default: halfp")
parser.add_argument("--training-default-bnb", action='store_true', default=default_arguments['training-default-bnb'], help="Training default: bnb")
parser.add_argument("--os", default="unix", help="Specifies which OS, easily")
args = parser.parse_args()
args.embed_output_metadata = not args.no_embed_output_metadata
if not args.device_override:
set_device_name(args.device_override)
args.listen_host = None
args.listen_port = None
args.listen_path = None
if args.listen:
try:
match = re.findall(r"^(?:(.+?):(\d+))?(\/.*?)?$", args.listen)[0]
args.listen_host = match[0] if match[0] != "" else "127.0.0.1"
args.listen_port = match[1] if match[1] != "" else None
args.listen_path = match[2] if match[2] != "" else "/"
except Exception as e:
pass
if args.listen_port is not None:
args.listen_port = int(args.listen_port)
if args.listen_port == 0:
args.listen_port = None
return args
def get_default_settings( hypenated=True ):
settings = {
'listen': None if not args.listen else args.listen,
'share': args.share,
'low-vram':args.low_vram,
'check-for-updates':args.check_for_updates,
'models-from-local-only':args.models_from_local_only,
'force-cpu-for-conditioning-latents': args.force_cpu_for_conditioning_latents,
'defer-tts-load': args.defer_tts_load,
'prune-nonfinal-outputs': args.prune_nonfinal_outputs,
'device-override': args.device_override,
'sample-batch-size': args.sample_batch_size,
'embed-output-metadata': args.embed_output_metadata,
'latents-lean-and-mean': args.latents_lean_and_mean,
'voice-fixer': args.voice_fixer,
'voice-fixer-use-cuda': args.voice_fixer_use_cuda,
'concurrency-count': args.concurrency_count,
'output-sample-rate': args.output_sample_rate,
'autocalculate-voice-chunk-duration-size': args.autocalculate_voice_chunk_duration_size,
'output-volume': args.output_volume,
'tts-backend': args.tts_backend,
'autoregressive-model': args.autoregressive_model,
'vocoder-model': args.vocoder_model,
'whisper-backend': args.whisper_backend,
'whisper-model': args.whisper_model,
'training-default-halfp': args.training_default_halfp,
'training-default-bnb': args.training_default_bnb,
}
res = {}
for k in settings:
res[k.replace("-", "_") if not hypenated else k] = settings[k]
return res
def update_args( **kwargs ):
global args
settings = get_default_settings(hypenated=False)
settings.update(kwargs)
args.listen = settings['listen']
args.share = settings['share']
args.check_for_updates = settings['check_for_updates']
args.models_from_local_only = settings['models_from_local_only']
args.low_vram = settings['low_vram']
args.force_cpu_for_conditioning_latents = settings['force_cpu_for_conditioning_latents']
args.defer_tts_load = settings['defer_tts_load']
args.prune_nonfinal_outputs = settings['prune_nonfinal_outputs']
args.device_override = settings['device_override']
args.sample_batch_size = settings['sample_batch_size']
args.embed_output_metadata = settings['embed_output_metadata']
args.latents_lean_and_mean = settings['latents_lean_and_mean']
args.voice_fixer = settings['voice_fixer']
args.voice_fixer_use_cuda = settings['voice_fixer_use_cuda']
args.concurrency_count = settings['concurrency_count']
args.output_sample_rate = 44000
args.autocalculate_voice_chunk_duration_size = settings['autocalculate_voice_chunk_duration_size']
args.output_volume = settings['output_volume']
args.tts_backend = settings['tts_backend']
args.autoregressive_model = settings['autoregressive_model']
args.vocoder_model = settings['vocoder_model']
args.whisper_backend = settings['whisper_backend']
args.whisper_model = settings['whisper_model']
args.training_default_halfp = settings['training_default_halfp']
args.training_default_bnb = settings['training_default_bnb']
save_args_settings()
def save_args_settings():
global args
settings = get_default_settings()
os.makedirs('./config/', exist_ok=True)
with open(f'./config/exec.json', 'w', encoding="utf-8") as f:
f.write(json.dumps(settings, indent='\t') )
# super kludgy )`;
def import_generate_settings(file = None):
if not file:
file = "./config/generate.json"
res = {
'text': None,
'delimiter': None,
'emotion': None,
'prompt': None,
'voice': None,
'mic_audio': None,
'voice_latents_chunks': None,
'candidates': None,
'seed': None,
'num_autoregressive_samples': 16,
'diffusion_iterations': 30,
'temperature': 0.8,
'diffusion_sampler': "DDIM",
'breathing_room': 8 ,
'cvvp_weight': 0.0,
'top_p': 0.8,
'diffusion_temperature': 1.0,
'length_penalty': 1.0,
'repetition_penalty': 2.0,
'cond_free_k': 2.0,
'experimentals': None,
}
settings, _ = read_generate_settings(file, read_latents=False)
if settings is not None:
res.update(settings)
return res
def reset_generation_settings():
with open(f'./config/generate.json', 'w', encoding="utf-8") as f:
f.write(json.dumps({}, indent='\t') )
return import_generate_settings()
def read_generate_settings(file, read_latents=True):
j = None
latents = None
if isinstance(file, list) and len(file) == 1:
file = file[0]
try:
if file is not None:
if hasattr(file, 'name'):
file = file.name
if file[-4:] == ".wav":
metadata = music_tag.load_file(file)
if 'lyrics' in metadata:
j = json.loads(str(metadata['lyrics']))
elif file[-5:] == ".json":
with open(file, 'r') as f:
j = json.load(f)
except Exception as e:
pass
if j is not None:
if 'latents' in j:
if read_latents:
latents = base64.b64decode(j['latents'])
del j['latents']
if "time" in j:
j["time"] = "{:.3f}".format(j["time"])
return (
j,
latents,
)
def version_check_tts( min_version ):
global tts
if not tts:
raise Exception("TTS is not initialized")
if not hasattr(tts, 'version'):
return False
if min_version[0] > tts.version[0]:
return True
if min_version[1] > tts.version[1]:
return True
if min_version[2] >= tts.version[2]:
return True
return False
def load_tts( restart=False, autoregressive_model=None ):
global args
global tts
if restart:
unload_tts()
if autoregressive_model:
args.autoregressive_model = autoregressive_model
else:
autoregressive_model = args.autoregressive_model
if autoregressive_model == "auto":
autoregressive_model = deduce_autoregressive_model()
if get_device_name() == "cpu":
print("!!!! WARNING !!!! No GPU available in PyTorch. You may need to reinstall PyTorch.")
tts_loading = True
print(f"Loading TorToiSe... (AR: {autoregressive_model}, vocoder: {args.vocoder_model})")
tts = TextToSpeech(minor_optimizations=not args.low_vram, autoregressive_model_path=autoregressive_model, vocoder_model=args.vocoder_model)
tts_loading = False
get_model_path('dvae.pth')
print("Loaded TorToiSe, ready for generation.")
return tts
setup_tortoise = load_tts
def unload_tts():
global tts
if tts:
del tts
tts = None
print("Unloaded TTS")
do_gc()
def reload_tts( model=None ):
load_tts( restart=True, model=model )
def get_current_voice():
global current_voice
if current_voice:
return current_voice
settings, _ = read_generate_settings("./config/generate.json", read_latents=False)
if settings and "voice" in settings['voice']:
return settings["voice"]
return None
def deduce_autoregressive_model(voice=None):
if not voice:
voice = get_current_voice()
if voice:
if os.path.exists(f'./models/finetunes/{voice}.pth'):
return f'./models/finetunes/{voice}.pth'
dir = f'./training/{voice}/finetune/models/'
if os.path.isdir(dir):
counts = sorted([ int(d[:-8]) for d in os.listdir(dir) if d[-8:] == "_gpt.pth" ])
names = [ f'{dir}/{d}_gpt.pth' for d in counts ]
if len(names) > 0:
return names[-1]
if args.autoregressive_model != "auto":
return args.autoregressive_model
return get_model_path('autoregressive.pth')
def update_autoregressive_model(autoregressive_model_path):
match = re.findall(r'^\[[a-fA-F0-9]{8}\] (.+?)$', autoregressive_model_path)
if match:
autoregressive_model_path = match[0]
if not autoregressive_model_path or not os.path.exists(autoregressive_model_path):
print(f"Invalid model: {autoregressive_model_path}")
return
args.autoregressive_model = autoregressive_model_path
save_args_settings()
print(f'Stored autoregressive model to settings: {autoregressive_model_path}')
global tts
if not tts:
if tts_loading:
raise Exception("TTS is still initializing...")
return
if hasattr(tts, "loading") and tts.loading:
raise Exception("TTS is still initializing...")
if autoregressive_model_path == "auto":
autoregressive_model_path = deduce_autoregressive_model()
if autoregressive_model_path == tts.autoregressive_model_path:
return
tts.load_autoregressive_model(autoregressive_model_path)
do_gc()
return autoregressive_model_path
def update_vocoder_model(vocoder_model):
args.vocoder_model = vocoder_model
save_args_settings()
print(f'Stored vocoder model to settings: {vocoder_model}')
global tts
if not tts:
if tts_loading:
raise Exception("TTS is still initializing...")
return
if hasattr(tts, "loading") and tts.loading:
raise Exception("TTS is still initializing...")
print(f"Loading model: {vocoder_model}")
tts.load_vocoder_model(vocoder_model)
print(f"Loaded model: {tts.vocoder_model}")
do_gc()
return vocoder_model
def load_voicefixer(restart=False):
global voicefixer
if restart:
unload_voicefixer()
try:
print("Loading Voicefixer")
from voicefixer import VoiceFixer
voicefixer = VoiceFixer()
print("Loaded Voicefixer")
except Exception as e:
print(f"Error occurred while tring to initialize voicefixer: {e}")
if voicefixer:
del voicefixer
voicefixer = None
def unload_voicefixer():
global voicefixer
if voicefixer:
del voicefixer
voicefixer = None
print("Unloaded Voicefixer")
do_gc()
def load_whisper_model(language=None, model_name=None, progress=None):
global whisper_model
if model_name == "m-bain/whisperx":
print("WhisperX has been removed. Reverting to openai/whisper. Apologies for the inconvenience.")
model_name = "openai/whisper"
if args.whisper_backend not in WHISPER_BACKENDS:
raise Exception(f"unavailable backend: {args.whisper_backend}")
if not model_name:
model_name = args.whisper_model
else:
args.whisper_model = model_name
save_args_settings()
if language and f'{model_name}.{language}' in WHISPER_SPECIALIZED_MODELS:
model_name = f'{model_name}.{language}'
print(f"Loading specialized model for language: {language}")
notify_progress(f"Loading Whisper model: {model_name}", progress)
if args.whisper_backend == "openai/whisper":
import whisper
try:
#is it possible for model to fit on vram but go oom later on while executing on data?
whisper_model = whisper.load_model(model_name)
except:
print("Out of VRAM memory. falling back to loading Whisper on CPU.")
whisper_model = whisper.load_model(model_name, device="cpu")
elif args.whisper_backend == "lightmare/whispercpp":
from whispercpp import Whisper
if not language:
language = 'auto'
b_lang = language.encode('ascii')
whisper_model = Whisper(model_name, models_dir='./models/', language=b_lang)
print("Loaded Whisper model")
def unload_whisper():
global whisper_model
if whisper_model:
del whisper_model
whisper_model = None
print("Unloaded Whisper")
do_gc()